免費高一數(shù)學(xué)教案

| 新華0

編寫教案有助于更好地滿足學(xué)生的學(xué)習(xí)需求,提高學(xué)生的學(xué)習(xí)效果。要怎么寫免費高一數(shù)學(xué)教案呢?下面給大家分享一些免費高一數(shù)學(xué)教案,供大家參考。

免費高一數(shù)學(xué)教案篇1

一、教材分析

(一)地位與作用

數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。

(二)學(xué)情分析

(1)學(xué)生已熟練掌握_________________。

(2)學(xué)生的知識經(jīng)驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。

(3)學(xué)生思維活潑,積極性高,已初步形成對數(shù)學(xué)問題的合作探究能力。

(4)學(xué)生層次參次不齊,個體差異比較明顯。

二、目標(biāo)分析

新課標(biāo)指出“三維目標(biāo)”是一個密切聯(lián)系的有機整體,應(yīng)該以獲得知識與技能的過程,同時成為學(xué)會學(xué)習(xí)和正確價值觀。這要求我們在教學(xué)中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學(xué)過程中,新課標(biāo)指出教學(xué)的主體是學(xué)生,因此目標(biāo)的制定和設(shè)計必須從學(xué)生的角度出發(fā),根據(jù)____在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標(biāo):

(一)教學(xué)目標(biāo)

(1)知識與技能

使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;。

(2)過程與方法

引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運用函數(shù)單調(diào)性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

(3)情感態(tài)度與價值觀

在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

(二)重點難點

本節(jié)課的教學(xué)重點是________________________,教學(xué)難點是_____________________。

三、教法、學(xué)法分析

(一)教法

基于本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,按照__市高中數(shù)學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗教學(xué)法為主來完成教學(xué),為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:

1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性.

2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念.

3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评?,并順利地完成書面表達(dá).

(二)學(xué)法

在學(xué)法上我重視了:

1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的質(zhì)的飛躍。

2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

免費高一數(shù)學(xué)教案篇2

1、知識與技能

(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);

(2)理解任意角的三角函數(shù)不同的定義方法;

(3)了解如何利用與單位圓有關(guān)的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來;

(4)掌握并能初步運用公式一;

(5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù).

2、過程與方法

初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進(jìn)一步認(rèn)識三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).

3、情態(tài)與價值

任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點.過去習(xí)慣于用角的終邊上點的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解.

本節(jié)利用單位圓上點的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個函數(shù)之間的關(guān)系.

教學(xué)重難點

重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).

難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.

免費高一數(shù)學(xué)教案篇3

教學(xué)目標(biāo)

1.使學(xué)生了解反函數(shù)的概念;

2.使學(xué)生會求一些簡單函數(shù)的反函數(shù);

3.培養(yǎng)學(xué)生用辯證的觀點觀察、分析解決問題的能力。

教學(xué)重點

1.反函數(shù)的概念;

2.反函數(shù)的求法。

教學(xué)難點

反函數(shù)的概念。

教學(xué)方法

師生共同討論

教具裝備

幻燈片2張

第一張:反函數(shù)的定義、記法、習(xí)慣記法。(記作A);

第二張:本課時作業(yè)中的預(yù)習(xí)內(nèi)容及提綱。

教學(xué)過程

(I)講授新課

(檢查預(yù)習(xí)情況)

師:這節(jié)課我們來學(xué)習(xí)反函數(shù)(板書課題)§2.4.1反函數(shù)的概念。

同學(xué)們已經(jīng)進(jìn)行了預(yù)習(xí),對反函數(shù)的概念有了初步的了解,誰來復(fù)述一下反函數(shù)的定義、記法、習(xí)慣記法?

生:(略)

(學(xué)生回答之后,打出幻燈片A)。

師:反函數(shù)的定義著重強調(diào)兩點:

(1)根據(jù)y=f(x)中x與y的關(guān)系,用y把x表示出來,得到x=φ(y);

(2)對于y在c中的任一個值,通過x=φ(y),x在A中都有惟一的值和它對應(yīng)。

師:應(yīng)該注意習(xí)慣記法是由記法改寫過來的。

師:由反函數(shù)的定義,同學(xué)們考慮一下,怎樣的映射確定的函數(shù)才有反函數(shù)呢?

生:一一映射確定的函數(shù)才有反函數(shù)。

(學(xué)生作答后,教師板書,若學(xué)生答不來,教師再予以必要的啟示)。

師:在y=f(x)中與y=f-1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個集合,y也是如此),但地位不同(前者x是自變量,y是函數(shù)值;后者y是自變量,x是函數(shù)值。)

在y=f(x)中與y=f–1(x)中的x都是自變量,y都是函數(shù)值,即x、y在兩式中所處的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)

由此,請同學(xué)們談一下,函數(shù)y=f(x)與它的反函數(shù)y=f–1(x)兩者之間,定義域、值域存在什么關(guān)系呢?

生:(學(xué)生作答,教師板書)函數(shù)的定義域,值域分別是它的反函數(shù)的值域、定義域。

師:從反函數(shù)的概念可知:函數(shù)y=f(x)與y=f–1(x)互為反函數(shù)。

從反函數(shù)的概念我們還可以知道,求函數(shù)的反函數(shù)的方法步驟為:

(1)由y=f(x)解出x=f–1(y),即把x用y表示出;

(2)將x=f–1(y)改寫成y=f–1(x),即對調(diào)x=f–1(y)中的x、y。

(3)指出反函數(shù)的定義域。

下面請同學(xué)自看例1

(II)課堂練習(xí)課本P68練習(xí)1、2、3、4。

(III)課時小結(jié)

本節(jié)課我們學(xué)習(xí)了反函數(shù)的概念,從中知道了怎樣的映射確定的函數(shù)才有反函數(shù)并求函數(shù)的反函數(shù)的方法步驟,大家要熟練掌握。

(IV)課后作業(yè)

一、課本P69習(xí)題2.41、2。

二、預(yù)習(xí):互為反函數(shù)的函數(shù)圖象間的關(guān)系,親自動手作題中要求作的圖象。

板書設(shè)計

課題:求反函數(shù)的方法步驟:

定義:(幻燈片)

注意:小結(jié)

一一映射確定的

函數(shù)才有反函數(shù)

函數(shù)與它的反函

數(shù)定義域、值域的關(guān)系。

免費高一數(shù)學(xué)教案篇4

新學(xué)期又開始了,為使今后的工作能更順利的開展,特制定此工作計劃,請領(lǐng)導(dǎo)多多批評指導(dǎo)。

一、教材分析

高一上學(xué)期學(xué)習(xí)歷史必修ⅰ“政治文明歷程”,著重反映人類社會政治領(lǐng)域發(fā)展進(jìn)程中的重要內(nèi)容。政治活動是人類社會生活的重要組成部分。它與社會經(jīng)濟、文化活動密切相關(guān),相互作用。了解中外歷重要政治制度、重大事件及重要人物,探討其在人類歷史進(jìn)程中的作用及其影響,汲取必要的歷史經(jīng)驗教訓(xùn)。

二、學(xué)生現(xiàn)狀分析

今年任教高一六、七、八、九四個的歷史教學(xué)工作。通過初步接觸和了解發(fā)現(xiàn)學(xué)生歷史學(xué)科基礎(chǔ)相當(dāng)薄弱,缺乏學(xué)習(xí)興趣,基本的學(xué)習(xí)方法和習(xí)慣都沒有養(yǎng)成,而且對歷史學(xué)科一慣當(dāng)作“副科”,非常不重視。

三、本學(xué)期教學(xué)目標(biāo)

1、知識與能力目標(biāo):通過學(xué)習(xí),了解人類歷重要政治制度、政治事件及其代表人物等基本史實,正確認(rèn)識歷階級、階級關(guān)系和階級斗爭,認(rèn)識人類社會發(fā)展的基本規(guī)律。

2、過程與方法:學(xué)習(xí)搜集歷有關(guān)政治活動方面的資料,并能進(jìn)行初步的歸納與分析;學(xué)會從歷史的角度來看待不同政治制度的產(chǎn)生、發(fā)展及其歷史影響,理解政治變革是社會歷史發(fā)展多種因素共同作用的結(jié)果,并能對其進(jìn)行科學(xué)的評價與解釋。

3、情感態(tài)度與價值觀:理解從專制到民主、從人治到法治是人類社會一個漫長而艱難的歷史過程,樹立為社會主義政治文明建設(shè)而奮斗的人生理想。

四、工作措施

1、強化學(xué)生掌握基礎(chǔ)知識的質(zhì),提高學(xué)生運用知識的水平。

就是要將課標(biāo)要求的基礎(chǔ)知識記憶牢固,理解準(zhǔn)確。要注意研究在復(fù)習(xí)中怎樣把注重基礎(chǔ)知識的學(xué)習(xí)和專題問題、熱點問題聯(lián)系起來;要研究怎樣整合教材,怎樣加強三個必修模塊內(nèi)容之間的嫁接與聯(lián)系,怎樣整合選修模塊與必修模塊之間的聯(lián)系;要研究采取哪些方式方法才能讓學(xué)生把主干歷史知識扎扎實實地掌握起來,達(dá)到記憶牢固,理解準(zhǔn)確,運用靈活。

2、加強對學(xué)生分析解決問題的學(xué)習(xí)能力的培養(yǎng)。

針對前面分析的學(xué)生在知識遷移能力、提取有效信息能力、思維能力、審題能力等方面存在的諸多問題,要采取得力措施:

研究怎樣實施問題意識教學(xué),即怎樣在復(fù)習(xí)教學(xué)中滲透問題意識,將教材中陳述性的史實,轉(zhuǎn)換成問題性的素材,把說史變成問史和疑史,鼓勵學(xué)生尋找史實之間的因果轉(zhuǎn)化關(guān)系,把歷史的知識序列變成史實的問題序列。

研究怎樣提高學(xué)生理論認(rèn)識能力,即學(xué)會應(yīng)用辯證唯物主義和歷史唯物主義基本原理分析和解決問題,使學(xué)生把理論觀點轉(zhuǎn)化為認(rèn)識歷史的思維方法,用以全面地、辯證地分析歷史問題。

研究采取什么措施和方法落實歷史思維能力的培養(yǎng)與訓(xùn)練,即怎樣把各種能力培養(yǎng)與具體的歷史知識相結(jié)合,與一定的方法技巧相結(jié)合;怎樣把能力的培養(yǎng)貫穿于教學(xué)、測試等各個環(huán)節(jié)和各種教學(xué)活動中,做到能力培養(yǎng)內(nèi)容化、方法化、經(jīng)?;?,以期切實提高學(xué)生解答歷史試題的基本能力。

研究采取那些措施和方法培養(yǎng)學(xué)生從材料中提取有效信息回答問題的能力,讓學(xué)生做到:能夠正確理解材料信息的含義;能夠準(zhǔn)確概括提煉有效信息;能夠結(jié)合所學(xué)知識解決新問題。

3、加強學(xué)生行文答卷的規(guī)范性。

初步設(shè)想通過老師明確要求和樣卷展覽、個別指導(dǎo)、限期做到等四個環(huán)節(jié)來落實加強學(xué)生行文答卷的規(guī)范性的訓(xùn)練。

通過采取各種有效措施達(dá)到三個教學(xué)目標(biāo):一是放慢速度,夯實基礎(chǔ);二是理清線索,構(gòu)建結(jié)構(gòu);三是注重能力,接軌高考。在今后的教學(xué)工作中要以提高課堂教學(xué)效益為目的,全面整合教材內(nèi)容,優(yōu)化教學(xué)模式,以期在提高學(xué)生綜合素質(zhì)的基礎(chǔ)上幫助學(xué)生提高歷史學(xué)科的學(xué)習(xí)能力和綜合探究能力。

五、專業(yè)成長計劃

本學(xué)期繼續(xù)努力學(xué)習(xí),廣泛涉獵本學(xué)科、現(xiàn)代教育技術(shù)以及教育教學(xué)和學(xué)生管理方面的理論,并積極參加各種學(xué)習(xí)和培訓(xùn),對素質(zhì)教育和高效課堂要有更明確的認(rèn)識,并積極參加投身教研教改,把成果落實到教學(xué)實踐中。

免費高一數(shù)學(xué)教案篇5

一、教材分析

函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。

本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

二、重難點分析

根據(jù)對上述對教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點。

三、學(xué)情分析

1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。

四、目標(biāo)分析

1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。

2、通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。

3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

五、教法學(xué)法

本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程。

學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。

免費高一數(shù)學(xué)教案篇6

教學(xué)目的:

掌握圓的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題

教學(xué)重點:

圓的標(biāo)準(zhǔn)方程及有關(guān)運用

教學(xué)難點:

標(biāo)準(zhǔn)方程的靈活運用

教學(xué)過程:

一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

二、掌握知識,鞏固練習(xí)

練習(xí):

1.說出下列圓的方程

⑴圓心(3,-2)半徑為5

⑵圓心(0,3)半徑為3

2.指出下列圓的圓心和半徑

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

3.判斷3x-4y-10=0和x2+y2=4的位置關(guān)系

4.圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

三、引伸提高,講解例題

例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

練習(xí):

1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

四、小結(jié)練習(xí)P771,2,3,4

五、作業(yè)P811,2,3,4

免費高一數(shù)學(xué)教案篇7

一、指導(dǎo)思想與理論依據(jù)

數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。

二、教材分析

三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實驗教科書(人教A版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時,教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與、、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

三、學(xué)情分析

本節(jié)課的授課對象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容.

四、教學(xué)目標(biāo)

(1).基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;

(2).能力訓(xùn)練目標(biāo):能正確運用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡單的三角函數(shù)求值與化簡;

(3).創(chuàng)新素質(zhì)目標(biāo):通過對公式的推導(dǎo)和運用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生分析問題、解決問題的能力;

(4).個性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀.

五、教學(xué)重點和難點

1.教學(xué)重點

理解并掌握誘導(dǎo)公式.

2.教學(xué)難點

正確運用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式.

六、教法學(xué)法以及預(yù)期效果分析

“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究.下面我從教法、學(xué)法、預(yù)期效果等三個方面做如下分析.

1.教法

數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的教學(xué),而不僅僅是數(shù)學(xué)活動的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識,更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì).

在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅.

2.學(xué)法

“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識點,卻忽略了學(xué)生接受知識需要時間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生程度的消化知識,提高學(xué)習(xí)熱情是教者必須思考的問題.

在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題、共同探討、解決問題簡單應(yīng)用、重現(xiàn)探索過程、練習(xí)鞏固。讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí).

3.預(yù)期效果

本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題.

七、教學(xué)流程設(shè)計

(一)創(chuàng)設(shè)情景

1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值;

2.復(fù)習(xí)任意角的三角函數(shù)定義;

3.問題:由,你能否知道sin2100的值嗎?引如新課.

設(shè)計意圖

自信的鼓勵是增強學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強了每個學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.

(二)新知探究

1.讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;

2.讓學(xué)生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點的坐標(biāo)有什么關(guān)系;

3.Sin2100與sin300之間有什么關(guān)系.

設(shè)計意圖

由特殊問題的引入,使學(xué)生容易了解,實現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.

(三)問題一般化

探究一

1.探究發(fā)現(xiàn)任意角的終邊與的終邊關(guān)于原點對稱;

2.探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點坐標(biāo)關(guān)于原點對稱;

3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系.

設(shè)計意圖

首先應(yīng)用單位圓,并以對稱為載體,用聯(lián)系的觀點,把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來,數(shù)形結(jié)合,問題的設(shè)計提問從特殊到一般,從線對稱到點對稱到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導(dǎo)公式二.同時也為學(xué)生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習(xí)設(shè)計為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進(jìn)而敢于挑戰(zhàn),敢于前進(jìn)

(四)練習(xí)

利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.

(1).;(2).;(3)..

喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.

(五)問題變形

由sin3000=-sin600出發(fā),用三角的定義引導(dǎo)學(xué)生求出sin(-3000),Sin1500值,讓學(xué)生聯(lián)想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值.學(xué)生自主探究

免費高一數(shù)學(xué)教案篇8

教學(xué)目標(biāo):

①掌握對數(shù)函數(shù)的性質(zhì)。

②應(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。

③ 注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。

教學(xué)重點與難點:對數(shù)函數(shù)的性質(zhì)的應(yīng)用。

教學(xué)過程設(shè)計:

⒈復(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。

⒉開始正課

1 比較數(shù)的大小

例 1 比較下列各組數(shù)的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學(xué)們觀察一下⑴中這兩個對數(shù)有何特征?

生:這兩個對數(shù)底相等。

師:那么對于兩個底相等的對數(shù)如何比大小?

生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數(shù)函數(shù)的單調(diào)性取決于底的大?。寒?dāng)0調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時,函數(shù)y=logax單調(diào)遞增,所以loga5.1

板書:

解:Ⅰ)當(dāng)0

∵5.1<5.9 ∴l(xiāng)oga5.1>loga5.9

Ⅱ)當(dāng)a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),

∵5.1<5.9 ∴l(xiāng)oga5.1

師:請同學(xué)們觀察一下⑵中這三個對數(shù)有何特征?

生:這三個對數(shù)底、真數(shù)都不相等。

師:那么對于這三個對數(shù)如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書:略。

師:比較對數(shù)值的大小常用方法:①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對數(shù)函數(shù)圖象的位置關(guān)系來比大小。

2 函數(shù)的定義域, 值 域及單調(diào)性。

例 2 ⑴求函數(shù)y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求它們共同作用的結(jié)果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。

板書:

解:∵   2x-1≠0      x≠0.5

log0.8x-1≥0 ,  x≤0.8

x>0        x>0

∴x(0,0.5)∪(0.5,0.8〕

師:接下來我們一起來解這個不等式。

分析:要解這個不等式,首先要使這個不等式有意義,即真數(shù)大于零,再根據(jù)對數(shù)函數(shù)的單調(diào)性求解。

師:請你寫一下這道題的解題過程。

生:<板書>

解:  x2+2x-3>0      x<-3 或 x>1

(3x+3)>0    ,   x>-1

x2+2x-3<(3x+3)    -2

不等式的解為:1

例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。

下面請同學(xué)們來解⑴。

生:此函數(shù)可看作是由y= log0.5u, u= x- x2復(fù)合而成。

板書:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-0.5)2+0.25, ∴0

∴y= log0.5u≥log0.50.25=2

∴y≥2

x    x(0,0.5]   x[0.5,1)

u= x- x2

y= log0.5u

y=log0.5(x- x2)

函數(shù)y=log0.5(x- x2)的單調(diào)遞減區(qū)間(0,0.5],單調(diào)遞 增區(qū)間[0.5,1)

注:研究任何函數(shù)的性質(zhì)時,都應(yīng)該首先保證這個函數(shù)有意義,否則函數(shù)都不存在,性質(zhì)就無從談起。

師:在⑴的基礎(chǔ)上,我們一起來解⑵。請同學(xué)們觀察一下⑴與⑵有什么區(qū)別?

生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。

師:那么⑵如何來解?

生:只要對a進(jìn)行分類討論,做法與⑴類似。

板書:略。

⒊小結(jié)

這堂課主要講解如何應(yīng)用對數(shù)函數(shù)的性質(zhì)解決一些問題,希望能通過這堂課使同學(xué)們對等價轉(zhuǎn)化、分類討論等思想加以應(yīng)用,提高解題能力。

⒋作業(yè)

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù))

⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)

①求它的單調(diào)區(qū)間;②當(dāng)0

⑶已知函數(shù)y=loga (a>0, b>0, 且 a≠1)

①求它的定義域;②討論它的奇偶性;  ③討論它的單調(diào)性。

⑷已知函數(shù)y=loga(ax-1) (a>0,a≠1),

①求它的定義域;②當(dāng)x為何值時,函數(shù)值大于1;③討論它的單調(diào)性。

5.課堂教學(xué)設(shè)計說明

這節(jié)課是安排為習(xí)題課,主要利用對數(shù)函數(shù)的性質(zhì)解決一些問題,整個一堂課分兩個部分:一 .比較數(shù)的大小,想通過這一部分的練習(xí),

培養(yǎng)同學(xué)們構(gòu)造函數(shù)的思想和分類討論、數(shù)形結(jié)合的思想。二.函數(shù)的定義域, 值 域及單調(diào)性,想通過這一部分的練習(xí),能使同學(xué)們重視求函數(shù)的定義域。因為學(xué)生在求函數(shù)的值域和單調(diào)區(qū)間時,往往不考慮函數(shù)的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學(xué)生做到想法正確,步驟清晰。為了調(diào)動學(xué)生的積極性,突出學(xué)生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學(xué)生獨立完成。但是,每一道題的解題過程,老師都應(yīng)該給以板書,這樣既讓學(xué)生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結(jié),以使好學(xué)生掌握地更完善,較差的學(xué)生也能夠跟上。

免費高一數(shù)學(xué)教案篇9

各位,下午好:

今天我說課的課題是古詩《迢迢牽牛星》。接下來,我對本課題進(jìn)行分析:

一、說教材的地位和作用

《迢迢牽牛星》是編排在粵教版全日制普通高級中學(xué)教科書語文必修1第四單元第四個課題《漢魏晉詩三首》中的其中一首?!霸谛臑橹荆l(fā)言為詩”,“情動于中而形于言”。詩歌是詩人真情實感的詠唱,是心靈對現(xiàn)實的應(yīng)答?!豆旁娛攀住酚沉藭r代的動蕩,社會的亂離《迢迢牽牛星》借牛郎織女的故事,寄托織女的相思之苦,形象地抒發(fā)了現(xiàn)實生活中男女情人咫尺天涯的哀怨,表達(dá)了渴望夫妻團(tuán)圓的強烈愿望。通過學(xué)習(xí)本文,將使學(xué)生進(jìn)一步學(xué)會詩歌鑒賞的方法,培養(yǎng)人文素養(yǎng)。在此之前,學(xué)生們已經(jīng)學(xué)習(xí)了《詩經(jīng)》兩首、《離騷(節(jié)選)》、《孔雀東南飛》,這為過渡到本課題的學(xué)習(xí)起到了很好的鋪墊作用。因此,學(xué)好本課為學(xué)好以后的詩歌可以打下牢固的理論基礎(chǔ),而且它在整個教材也起到了承上啟下的作用。本課包含的一些重要的知識點和思想,為以后學(xué)生在學(xué)習(xí)理解類似的詩歌并為簡單地鑒賞詩歌打下堅實的基礎(chǔ)。

二、說教學(xué)目標(biāo)

根據(jù)本教材的結(jié)構(gòu)和內(nèi)容分析,結(jié)合著高一年級學(xué)生他們的認(rèn)知結(jié)構(gòu)及其心理特征,我制定了以下的教學(xué)目標(biāo):

1.知識目標(biāo):了解《古詩十九首》相關(guān)知識,有節(jié)奏地朗讀詩歌并背誦全詩。

2.技能目標(biāo):會分析詩歌的情感,能簡單分析詩歌疊音詞作用和表達(dá)效果。

3.情感與價值觀目標(biāo):品味《迢迢牽牛星》詩中的愛情美,理解詩歌所表達(dá)出的渴望普天下夫妻團(tuán)聚的愿望。

三、說教學(xué)的重難點

本著對高中語文新課程標(biāo)準(zhǔn)的理解,在吃透教材基礎(chǔ)上,我確定了以下教學(xué)重點和難點。

1.教學(xué)重點:分析詩歌中疊音詞作用和表達(dá)效果,掌握鑒賞此類詩歌的技巧。

2.教學(xué)難點:據(jù)學(xué)生的認(rèn)知特點,牽牛織女星等天文知識、光年的定義的理解是教學(xué)的難點。

3.確立重點和難點的依據(jù)是:天文知識、光年較抽象,學(xué)生欠缺這方面的基礎(chǔ)知識。

為了講清教材的重難點,使學(xué)生能夠達(dá)到本課題設(shè)定的教學(xué)目標(biāo),我再從教法我學(xué)法上談?wù)劇?/p>

四、說教法

我們都知道語文是一門提高人文素養(yǎng),培養(yǎng)人的鑒賞能力的重要學(xué)科。因此,在教學(xué)過程中,不僅要使學(xué)生“知其然”,還要使學(xué)生“知其所以然”。我們在以師生既為主體又為客體的原則下,展現(xiàn)獲取理論知識、解決實際問題的思維過程。

考慮到高一級學(xué)生的現(xiàn)狀,我主要采取朗讀法、講授法、讀寫結(jié)合法,心理學(xué)理論告訴我們:學(xué)生的學(xué)習(xí)情緒直接影響學(xué)習(xí)效果。因此我還采用多媒體為教學(xué)手段的情景教學(xué)方法,創(chuàng)設(shè)情境幫助學(xué)生理解詩歌,利用疊音詞串聯(lián)詩歌,充分調(diào)動學(xué)生積極主動地參與到教學(xué)活動中來,使他們在活動中得到認(rèn)識和體驗。當(dāng)然老師自身也是非常重要的教學(xué)資源。教師本人應(yīng)該通過課堂教學(xué)感染和激勵學(xué)生,調(diào)動起學(xué)生參與活動的積極性,激發(fā)學(xué)生對解決實際問題的渴望,并且要培養(yǎng)學(xué)生以理論聯(lián)系實際的能力,從而達(dá)到的教學(xué)效果?;诒菊n題的特點,我主要采用了以下的教學(xué)方法:

1.朗讀法:“三分詩七分讀”。從教學(xué)過程來說,教學(xué)中將朗讀教學(xué)貫徹到課堂始終,教師示范朗讀,引導(dǎo)學(xué)生按要求聽讀,幫助學(xué)生深入體會課文的情感意蘊,學(xué)生通過反復(fù)的朗讀,加深對課文的理解,培養(yǎng)學(xué)生的語感。

2.講授法:教師通過口頭語言向?qū)W生傳授知識、培養(yǎng)能力、進(jìn)行思想教育。按照徹啟發(fā)式教學(xué)原則,講授的內(nèi)容突出本課的的重點、難點和關(guān)鍵,使學(xué)生隨著教師的講解或講述開動腦筋思考問題,講中有導(dǎo),講中有練。使學(xué)生主體作用凸顯出來,把課堂進(jìn)行得生動活潑,而不是注入式。

3.讀寫結(jié)合法:注重讀寫結(jié)合,在熟讀的基礎(chǔ)上,讓學(xué)生對教材后面的疊詞練習(xí)進(jìn)行快速地思考,組織答案,我來總結(jié)這類題目的答題技巧和規(guī)律。這不僅有助于學(xué)生對詩歌疊音詞的理解,而且提高了學(xué)生的詩歌鑒賞能力。

五、說學(xué)法

根據(jù)本文篇幅簡短,又是淺顯的文言文的特點,要求學(xué)生課前必須進(jìn)行預(yù)習(xí),并利用課下注釋和工具書來疏通文意。讓學(xué)生從機械的“學(xué)答”向“學(xué)問”轉(zhuǎn)變,從“學(xué)會”向“會學(xué)”轉(zhuǎn)變,成為學(xué)習(xí)的真正的主人。在課堂上,通過朗讀和提問法去推動學(xué)生思考,進(jìn)一步理解文章的內(nèi)容,調(diào)動學(xué)生學(xué)習(xí)的積極性,讀出初步真實感受。這節(jié)課在指導(dǎo)學(xué)生的學(xué)習(xí)方法和培養(yǎng)學(xué)生的學(xué)習(xí)能力方面主要采取以下方法:思考評價法、分析歸納法、總結(jié)反思法。

最后我具體來談?wù)勥@一堂課的教學(xué)過程。

六、說教學(xué)過程

在這節(jié)課的教學(xué)過程中,我注重突出重點,條理清晰,緊湊合理,各項活動的安排也注重互動、交流,限度的調(diào)動學(xué)生參與課堂的積極性、主動性。

1.導(dǎo)入新課:

提問學(xué)生是否知道中國古代四大愛情故事,從學(xué)生的回答情況中引出本節(jié)課的主題牛郎織女的故事。在此之后,請一位男生和一位女生起來講述他們所了解到的牛郎織女的愛情故事,總結(jié)學(xué)生的回答情況,并由我來詳細(xì)地向?qū)W生交代故事的起源、發(fā)展,最重要的是突出這樣一個常識讓傳說與課文有了緊密的切合點,牛郎和織女是因為王母娘娘的一根發(fā)簪化成的銀河而相隔兩地,不得相見,后來真情感動天地,遂允許二人七月七日相見。

2.示范朗讀:

教師朗讀全文,學(xué)生按要求在書中畫出容易讀錯的多音字詞。教師用語言鼓勵學(xué)生,請學(xué)生給老師挑刺(教師故意讀錯某個詞),歡迎學(xué)生與教師競爭。這樣既能使學(xué)生的注意力集中到聽讀上,同時又能激氣學(xué)生當(dāng)堂背下詩歌的興趣和信心。

3.學(xué)生朗讀:

朗讀是詩歌教學(xué)中必不可少的手段,應(yīng)反復(fù)進(jìn)行。要引導(dǎo)學(xué)生采用輪讀、個讀、聽讀、小組讀等多形式朗讀,以讀帶動對課文的理解,使學(xué)生以讀為樂。

4.學(xué)生背誦

在經(jīng)過反復(fù)的聽讀和朗讀之后,學(xué)生已經(jīng)基本能粗略知道詩歌大意,在此基礎(chǔ)上,要求學(xué)生根據(jù)自己的情況即時背誦,教師根據(jù)學(xué)生的不同情況引導(dǎo)以詩歌的思想內(nèi)容。

5.板書設(shè)計:

我比較注重直觀地、系統(tǒng)的板書設(shè)計,并及時地體現(xiàn)教材中的知識點,以便于學(xué)生能夠理解掌握。我的板書設(shè)計是:

6.布置作業(yè)。

我布置的課堂作業(yè)是:《一號》P110頁第三題

七、我為什么要這樣上課

1.對教材內(nèi)容的處理。

根據(jù)新課程標(biāo)準(zhǔn)的要求、知識的跨度、學(xué)生的認(rèn)知水平,我對教材內(nèi)容的增有減。

2.教學(xué)策略的選用

(1)重點字詞如多音字讀音讓學(xué)生動手去查閱,自己作初步的記憶,教師扮演輔導(dǎo)者的角色。這樣有利于學(xué)生能力的提高,有利于學(xué)生對詩歌學(xué)習(xí)興趣的培養(yǎng)。通過對《古詩十九首》及《迢迢牽牛星》的文學(xué)常識和背景知識的介紹,激發(fā)學(xué)生了解古詩的興趣,有利于提高學(xué)生學(xué)習(xí)的積極性。

(2)讓學(xué)生鞏固重點知識并形成新的知識。通過布置作業(yè),讓學(xué)生背誦課文,使他們進(jìn)一步的理解文章,梳理思路,提高詩歌鑒賞閱讀的語感和鑒賞的思路。完成《一號》的習(xí)題,有利于學(xué)生對詩歌的深刻理解,對以后的古詩學(xué)習(xí)打下堅實的基礎(chǔ)。

八、結(jié)束語

各位領(lǐng)導(dǎo)、老師們,本節(jié)課我根據(jù)高一年級學(xué)生的心理特征及其認(rèn)知規(guī)律,采用直觀教學(xué)和討論法的教學(xué)方法,以‘教師為主導(dǎo),學(xué)生為主體’,教師的“導(dǎo)”立足于學(xué)生的“學(xué)”,以學(xué)法為重心,放手讓學(xué)生自主探索的學(xué)習(xí),主動地參與到知識形成的整個思維過程,力求使學(xué)生在積極、愉快的課堂氣氛中提高自己的認(rèn)識水平,從而達(dá)到預(yù)期的教學(xué)效果。我的說課完畢,謝謝!

免費高一數(shù)學(xué)教案篇10

一、教學(xué)目標(biāo)

1.知識與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。

2.過程與方法:通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。

3.情感態(tài)度與價值觀:提高學(xué)生空間想象力,體會三視圖的作用。

二、教學(xué)重點:畫出簡單幾何體、簡單組合體的三視圖;

難點:識別三視圖所表示的空間幾何體。

三、學(xué)法指導(dǎo):觀察、動手實踐、討論、類比。

四、教學(xué)過程

(一)創(chuàng)設(shè)情景,揭開課題

展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。

(二)講授新課

1、中心投影與平行投影:

中心投影:光由一點向外散射形成的投影;

平行投影:在一束平行光線照射下形成的投影。

正投影:在平行投影中,投影線正對著投影面。

2、三視圖:

正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;

側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

三視圖的畫法規(guī)則:長對正,高平齊,寬相等。

長對正:正視圖與俯視圖的長相等,且相互對正;

高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;

寬相等:俯視圖與側(cè)視圖的寬度相等。

3、畫長方體的三視圖:

正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。

4、畫圓柱、圓錐的三視圖:

5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。

(三)鞏固練習(xí)

課本P15練習(xí)1、2;P20習(xí)題1.2[A組]2。

(四)歸納整理

請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

(五)布置作業(yè)

課本P20習(xí)題1.2[A組]1。

免費高一數(shù)學(xué)教案篇11

教學(xué)目標(biāo)

掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題。

教學(xué)重難點

掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題。

教學(xué)過程

等比數(shù)列性質(zhì)請同學(xué)們類比得出。

【方法規(guī)律】

1、通項公式與前n項和公式聯(lián)系著五個基本量,“知三求二”是一類最基本的運算題。方程觀點是解決這類問題的基本數(shù)學(xué)思想和方法。

2、判斷一個數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義。特別地,在判斷三個實數(shù)a,b,c成等差(比)數(shù)列時,常用(注:若為等比數(shù)列,則a,b,c均不為0)

3、在求等差數(shù)列前n項和的(?。┲禃r,常用函數(shù)的思想和方法加以解決。

【示范舉例】

例1:(1)設(shè)等差數(shù)列的前n項和為30,前2n項和為100,則前3n項和為。

(2)一個等比數(shù)列的前三項之和為26,前六項之和為728,則a1=,q=。

例2:四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù)。

例3:項數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項之和為44,偶數(shù)項之和為33,求該數(shù)列的中間項。

免費高一數(shù)學(xué)教案篇12

教學(xué)目標(biāo)

1.通過教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項公式.

2.使學(xué)生進(jìn)一步體會類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

3.培養(yǎng)學(xué)生勤于思考,實事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.

教學(xué)重點,難點

重點、難點是的定義的歸納及通項公式的推導(dǎo).

教學(xué)用具

投影儀,多媒體軟件,電腦.

教學(xué)方法

討論、談話法.

教學(xué)過程

一、提出問題

給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn).(幻燈片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1, , ,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生發(fā)表意見(可能按項與項之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為).

二、講解新課

請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設(shè)每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設(shè)開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,…,一直進(jìn)行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù) 這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——. (這里播放變形蟲分裂的多媒體軟件的第一步)

(板書)

1.的定義(板書)

根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的.教師寫出的定義,標(biāo)注出重點詞語.

請學(xué)生指出②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是.學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例.而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如 的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng) 時,數(shù)列 既是等差又是,當(dāng) 時,它只是等差數(shù)列,而不是.教師追問理由,引出對的認(rèn)識:

2.對定義的認(rèn)識(板書)

(1)的首項不為0;

(2)的每一項都不為0,即 ;

問題:一個數(shù)列各項均不為0是這個數(shù)列為的什么條件?

(3)公比不為0.

用數(shù)學(xué)式子表示的定義.

是 ①.在這個式子的寫法上可能會有一些爭議,如寫成 ,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為 是 ?為什么不能?

式子 給出了數(shù)列第 項與第 項的數(shù)量關(guān)系,但能否確定一個?(不能)確定一個需要幾個條件?當(dāng)給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.

3.的通項公式(板書)

問題:用 和 表示第 項 .

①不完全歸納法

②疊乘法

,… , ,這 個式子相乘得 ,所以 .

(板書)(1)的通項公式

得出通項公式后,讓學(xué)生思考如何認(rèn)識通項公式.

(板書)(2)對公式的認(rèn)識

由學(xué)生來說,最后歸結(jié):

①函數(shù)觀點;

②方程思想(因在等差數(shù)列中已有認(rèn)識,此處再復(fù)習(xí)鞏固而已).

這里強調(diào)方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個條件,就多知道了一個量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

三、小結(jié)

1.本節(jié)課研究了的概念,得到了通項公式;

2.注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

3.用方程的思想認(rèn)識通項公式,并加以應(yīng)用.

四、作業(yè) (略)

五、板書設(shè)計

1.等比數(shù)列的定義

2.對定義的認(rèn)識

3.等比數(shù)列的通項公式

(1)公式

(2)對公式的認(rèn)識

探究活動

將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.

參考答案:

30次后,厚度為,這個厚度超過了世界的山峰——珠穆朗瑪峰的高度.如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應(yīng)是 粒,用計算器算一下吧(用對數(shù)算也行).

免費高一數(shù)學(xué)教案篇13

一、教學(xué)過程

1.復(fù)習(xí)

反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。

求出函數(shù)y=x3的反函數(shù)。

2.新課

先讓學(xué)生用幾何畫板畫出y=x3的圖象,學(xué)生紛紛動手,很快畫出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象:

教師在畫出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。

生2:這是y=x3的反函數(shù)y=的圖象。

師:對,但是怎么會得到這個圖象,請大家討論。

(學(xué)生展開討論,但找不出原因。)

師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>

(生1將他的制作過程重新重復(fù)了一次。)

生3:問題出在他選擇的次序不對。

師:哪個次序?

生3:作點B前,選擇xA和xA3為B的坐標(biāo)時,他先選擇xA3,后選擇xA,作出來的點的坐標(biāo)為(xA3,xA),而不是(xA,xA3)。

師:是這樣嗎?我們請生1再做一次。

(這次生1在做的過程當(dāng)中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)

師:看來問題確實是出在這個地方,那么請同學(xué)再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?

(學(xué)生再次陷入思考,一會兒有學(xué)生舉手。)

師:我們請生4來告訴大家。

生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。

師:完全正確。下面我們進(jìn)一步研究y=x3的圖象及其反函數(shù)y=的圖象的關(guān)系,同學(xué)們能不能看出這兩個函數(shù)的圖象有什么樣的關(guān)系?

(多數(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進(jìn)一步追問。)

師:怎么由y=x3的圖象得到y(tǒng)=的圖象?

生5:將y=x3的圖象上點的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。

師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?

(學(xué)生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進(jìn)一步明確。)

師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關(guān)系,有的話,是什么樣的對稱關(guān)系?

(學(xué)生重新開始觀察這兩個函數(shù)的圖象,一會兒有學(xué)生舉手。)

生6:我發(fā)現(xiàn)這兩個圖象應(yīng)是關(guān)于某條直線對稱。

師:能說說是關(guān)于哪條直線對稱嗎?

生6:我還沒找出來。

(接下來,教師引導(dǎo)學(xué)生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)

學(xué)生通過移動點A(點B、C隨之移動)后發(fā)現(xiàn),BC的中點M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點后,發(fā)現(xiàn)中點的軌跡是直線y=x。

生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對稱。

師:這個結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關(guān)系嗎?請同學(xué)們用其他函數(shù)來試一試。

(學(xué)生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進(jìn)行驗證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。)

教師巡視全班時已經(jīng)發(fā)現(xiàn)這個問題,將這個圖象傳給全班學(xué)生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。

最后教師與學(xué)生一起總結(jié):

點(x,y)與點(y,x)關(guān)于直線y=x對稱;

函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。

二、反思與點評

1.在開學(xué)初,我就教學(xué)幾何畫板4。0的用法,在教函數(shù)圖象畫法的過程當(dāng)中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點時,不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫板4。0進(jìn)行教學(xué)。

2.荷蘭數(shù)學(xué)教育家弗賴登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過程當(dāng)中,可借助于生動直觀的形象來引導(dǎo)人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學(xué)生正確理解比較抽象的概念。

計算機作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達(dá)到更好地理解抽象概念,促進(jìn)學(xué)生思維的目的的話,這樣的教學(xué)中,計算機最多只是一種普通的直觀工具而已。

在本節(jié)課的教學(xué)中,計算機更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。

當(dāng)前計算機用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計算機作為學(xué)生的認(rèn)知工具,讓學(xué)生通過計算機發(fā)現(xiàn)探索,甚至利用計算機來做數(shù)學(xué),在此過程當(dāng)中更好地理解數(shù)學(xué)概念,促進(jìn)數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。

3.在引出兩個函數(shù)圖象對稱關(guān)系的時候,問題設(shè)計不甚妥當(dāng),本來是想要學(xué)生回答兩個函數(shù)圖象對稱的關(guān)系,但學(xué)生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問題在今后的教學(xué)中是必須力求避免的。

免費高一數(shù)學(xué)教案篇14

一、重視英語基礎(chǔ)知識,狠抓詞匯教學(xué)與基本句型的訓(xùn)練

以《新課程標(biāo)準(zhǔn)》為基礎(chǔ),以學(xué)校的教科研計劃為指導(dǎo),以學(xué)生的英語實際水平為依據(jù),我們學(xué)習(xí)和借鑒以往高一備課組的好的做法,重點在英語基礎(chǔ)知識的講練結(jié)合方面下工夫,學(xué)生的基礎(chǔ)薄弱,關(guān)鍵是基本詞匯掌握的不扎實,對英語的重點句型掌握得不好。我們每周進(jìn)行一次基本詞匯,重點句型和重點語法的隨堂檢測,每天課前五分鐘采用靈活多樣的方法進(jìn)行聽寫檢查,主要是采用在具體的語境中練習(xí)單詞拼寫的方法,先從最基本的詞匯抓起,逐步過渡到句型、小短文的默寫檢查上。

二、限度地提高課堂教學(xué)效率,發(fā)揮學(xué)生的學(xué)習(xí)積極性和主動性

在上每一節(jié)課前,都要先進(jìn)行集體備課,認(rèn)真研究教材和教法以及學(xué)生的學(xué)情,在課堂上限度的調(diào)動學(xué)生的學(xué)習(xí)積極性和主動性。設(shè)計簡單一些的問題,逐步引導(dǎo)學(xué)生思考,精講重點詞匯、短語及句式,多創(chuàng)設(shè)語言情境讓學(xué)生討論,對學(xué)生進(jìn)行分組分層教學(xué),設(shè)計不同難度的問題與練習(xí),讓每個學(xué)生都能體驗到英語學(xué)習(xí)的快樂與成功感。

三、以閱讀理解為主線,提升學(xué)生的語篇理解能力

閱讀是提高語篇理解能力的途徑,我們在上好閱讀課的同時,重點選取適合學(xué)生閱讀水平的閱讀材料,如:英語報刊上的經(jīng)典美文,《新概念英語》中的短文等。每天進(jìn)行一次閱讀訓(xùn)練,并跟上檢查批改,內(nèi)容為備課組自選的材料,可以從國外網(wǎng)站上或從報紙上選取內(nèi)容簡短,新穎有趣的文章。練習(xí)形式多樣,有傳統(tǒng)的選擇題,也有靈活多樣的問答題,填空題等。

四、加強聽力訓(xùn)練,注重聽力技巧的點撥

我們將利用好聽力材料,對學(xué)生的聽力進(jìn)行強化訓(xùn)練,同時,多指導(dǎo)做題技巧,聽力放完后學(xué)生把做錯的題目匯總,自查并反復(fù)閱讀聽力原文,找出錯題原因,然后老師利用合適的時間進(jìn)行指導(dǎo),點撥。尤其是在高一最初播放聽力的幾周時間里,教師要多指導(dǎo)。

五、組織好集體備課,加強相互聽課評課,取長補短,共同進(jìn)步

認(rèn)真組織好集體備課,限度地發(fā)揮集體智慧的力量,對教學(xué)的重點難點進(jìn)行討論,并由主備老師上示范課,其他老師聽課并一起評課,對不足之處進(jìn)行修改,補充,通過相互聽課學(xué)習(xí),加強教學(xué)和指導(dǎo)的針對性,發(fā)揮備課組骨干教師的示范作用,同時學(xué)習(xí)新教師的一些好的教學(xué)方法,做到取人之長,補己之短,使整個備課組成員共同成長。

六、換一種獨特的方法批改英語作文

我們本學(xué)期將一改過去傳統(tǒng)的批改作文的方法,采用劃出學(xué)生作文中正確句子的方法來批改,每次只劃出正確的和精彩的句子,并重點標(biāo)注。這樣幾乎每個學(xué)生都能夠?qū)憣σ粋€或幾個句子,這樣做的好處是學(xué)生會逐漸由寫好幾個句子提高到寫好大多數(shù)句子,也能使學(xué)生對寫作有成功感。然后我們把學(xué)生作文中的好句子進(jìn)行積累,整合,并印發(fā)給學(xué)生共同賞析。而不是象原來那樣,整篇文章中都是刺眼的錯誤,學(xué)生一看就感覺差距太大,不想繼續(xù)練了。

免費高一數(shù)學(xué)教案篇15

教學(xué)目的:

(1)明確函數(shù)的三種表示方法;

(2)在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù);

(3)通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用;

(4)糾正認(rèn)為“y=f(_)”就是函數(shù)的解析式的片面錯誤認(rèn)識.

教學(xué)重點:函數(shù)的三種表示方法,分段函數(shù)的概念.

教學(xué)難點:根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù),什么才算“恰當(dāng)”?分段函數(shù)的表示及其圖象.

教學(xué)過程:

引入課題

復(fù)習(xí):函數(shù)的概念;

常用的函數(shù)表示法及各自的優(yōu)點:

(1)解析法;

(2)圖象法;

(3)列表法.

新課教學(xué)

(一)典型例題

例1.某種筆記本的單價是5元,買_ (_∈{1,2,3,4,5})個筆記本需要y元.試用三種表示法表示函數(shù)y=f(_) .

分析:注意本例的設(shè)問,此處“y=f(_)”有三種含義,它可以是解析表達(dá)式,可以是圖象,也可以是對應(yīng)值表.

解:(略)

注意:

函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數(shù)圖象的依據(jù);

解析法:必須注明函數(shù)的定義域;

圖象法:是否連線;

列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征.

鞏固練習(xí):

課本P27練習(xí)第1題

例2.下表是某校高一(1)班三位同學(xué)在高一學(xué)年度幾次數(shù)學(xué)測試的成績及班級及班級平均分表:

第一次 第二次 第三次 第四次 第五次 第六次 王 偉 98 87 91 92 88 95 張 城 90 76 88 75 86 80 趙 磊 68 65 73 72 75 82 班平均分 88.2 78.3 85.4 80.3 75.7 82.6 請你對這三們同學(xué)在高一學(xué)年度的數(shù)學(xué)學(xué)習(xí)情況做一個分析.

分析:本例應(yīng)引導(dǎo)學(xué)生分析題目要求,做學(xué)情分析,具體要分析什么?怎么分析?借助什么工具?

解:(略)

注意:

本例為了研究學(xué)生的學(xué)習(xí)情況,將離散的點用虛線連接,這樣更便于研究成績的變化特點;

本例能否用解析法?為什么?

鞏固練習(xí):課本P27練習(xí)第2題

例3.畫出函數(shù)y = | _ | .

解:(略)

鞏固練習(xí):課本P27練習(xí)第3題

拓展練習(xí):

任意畫一個函數(shù)y=f(_)的圖象,然后作出y=|f(_)| 和 y=f (|_|) 的圖象,并嘗試簡要說明三者(圖象)之間的關(guān)系.

課本P27練習(xí)第3題

例4.某市郊空調(diào)公共汽車的票價按下列規(guī)則制定:

(1) 乘坐汽車5公里以內(nèi),票價2元;

(2) 5公里以上,每增加5公里,票價增加1元(不足5公里按5公里計算).

已知兩個相鄰的公共汽車站間相距約為1公里,如果沿途(包括起點站和終點站)設(shè)20個汽車站,請根據(jù)題意,寫出票價與里程之間的函數(shù)解析式,并畫出函數(shù)的圖象.

分析:本例是一個實際問題,有具體的實際意義.根據(jù)實際情況公共汽車到站才能停車,所以行車?yán)锍讨荒苋≌麛?shù)值.

解:設(shè)票價為y元,里程為_公里,同根據(jù)題意,

如果某空調(diào)汽車運行路線中設(shè)20個汽車站(包括起點站和終點站),那么汽車行駛的里程約為19公里,所以自變量_的取值范圍是{_∈N_| _≤19}.

由空調(diào)汽車票價制定的規(guī)定,可得到以下函數(shù)解析式:

()

根據(jù)這個函數(shù)解析式,可畫出函數(shù)圖象,如下圖所示:

注意:

本例具有實際背景,所以解題時應(yīng)考慮其實際意義;

本題可否用列表法表示函數(shù),如果可以,應(yīng)怎樣列表?

實踐與拓展:

請你設(shè)計一張乘車價目表,讓售票員和乘客非常容易地知道任意兩站之間的票價.(可以實地考查一下某公交車線路)

說明:象上面兩例中的函數(shù),稱為分段函數(shù).

495098