好的教案應(yīng)該考慮所需教具的準(zhǔn)備,如教學(xué)用具、實驗器材、多媒體設(shè)備等,以確保教學(xué)的順利進行。優(yōu)秀的高中數(shù)學(xué)教案電子版免費應(yīng)該是怎樣的?快來學(xué)習(xí)高中數(shù)學(xué)教案電子版免費的撰寫技巧,跟著小編一起來參考!
今天我說課的課題是《銳角三角函數(shù)》(第一課時),所選用的教材為人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書。
根據(jù)新課標(biāo)的理念,對于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學(xué)目標(biāo)分析,教學(xué)方法和學(xué)法分析,教學(xué)過程分析四個方面加以說明。
一、教材的地位和作用
本節(jié)教材是人教版初中數(shù)學(xué)新教材九年級下第28章第一節(jié)內(nèi)容,是初中數(shù)學(xué)的重要內(nèi)容之一。一方面,這是在學(xué)習(xí)了直角三角形兩銳角關(guān)系、勾股定理等知識的基礎(chǔ)上,對直角三角形邊角關(guān)系的進一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎(chǔ),也是高中進一步研究三角函數(shù)、反三角函數(shù)、三角方程的工具性內(nèi)容。鑒于這種認(rèn)識,我認(rèn)為,本節(jié)課不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。
2、學(xué)情分析
從學(xué)生的年齡特征和認(rèn)知特征來看:
九年級學(xué)生的思維活躍,接受能力較強,具備了一定的數(shù)學(xué)探究活動經(jīng)歷和應(yīng)用數(shù)學(xué)的意識。
從學(xué)生已具備的知識和技能來看:
九年級學(xué)生已經(jīng)掌握直角三角形中各邊和各角的關(guān)系,能靈活運用相似圖形的性質(zhì)及判定方法解決問題,有較強的推理證明能力,這為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ)
從心理特征來看:初三學(xué)生邏輯思維從經(jīng)驗型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。
從學(xué)生有待于提高的知識和技能來看:
學(xué)生要得出直角三角形中邊與角之間的關(guān)系,需要觀察、思考、交流,進一步體會數(shù)學(xué)知識之間的聯(lián)系,感受數(shù)形結(jié)合的思想,體會銳角三角函數(shù)的意義,提高應(yīng)用數(shù)學(xué)和合作交流的能力。學(xué)生可能會產(chǎn)生一定的困難,所以教學(xué)中應(yīng)予以簡單明了,深入淺出的剖析。
3、教學(xué)重、難點
根據(jù)以上對教材的地位和作用,以及學(xué)情分析,結(jié)合新課標(biāo)對本節(jié)課的要求,我將本節(jié)課的重點確定為:理解正弦函數(shù)意義,并會求銳角的正弦值。
難點確定為:根據(jù)銳角的正弦值及一邊,求直角三角形的其他邊長。
二、教學(xué)目標(biāo)分析
新課標(biāo)指出,教學(xué)目標(biāo)應(yīng)從知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度等四個方面闡述,而這四維目標(biāo)又應(yīng)是緊密聯(lián)系的一個完整的整體,學(xué)生學(xué)知識技能的過程同時成為學(xué)會學(xué)習(xí),形成正確價值觀的過程,這告訴我們,在教學(xué)中應(yīng)以知識技能為主線,滲透情感態(tài)度,并把前面兩者通過數(shù)學(xué)思考充分體現(xiàn)在問題解決中。借此結(jié)合以上教材分析,我將四個目標(biāo)進行整合,確定本節(jié)課的教學(xué)目標(biāo)為:
1.理解銳角正弦的意義,并會求銳角的正弦值;
2.初步了解銳角正弦取值范圍及增減性;
3.掌握根據(jù)銳角的正弦值及直角三角形的一邊,求直角三角形的其他邊長的方法;
4.經(jīng)歷銳角正弦的意義探索的過程,培養(yǎng)學(xué)生觀察分析、類比歸納的探究問題的能力;
5.通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學(xué)的合理性和嚴(yán)謹(jǐn)性,使學(xué)生養(yǎng)成積極思考,獨立思考的好習(xí)慣,并且同時培養(yǎng)學(xué)生的團隊合作精神。
三、教學(xué)方法和學(xué)法分析
現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的學(xué)情情況,本節(jié)課我采用“三動五自主”的教學(xué)模式,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與教學(xué)實踐活動,以獨立思考和合作交流的形式,在教師的指道下發(fā)現(xiàn)、分析和解決問題,在引導(dǎo)分析時,給學(xué)生流出足夠的思考時間和空間,讓學(xué)生去聯(lián)想、探索,從真正意義上完成對知識的自我建構(gòu)。
另外,在教學(xué)過程中,我采用多媒體輔助教學(xué),以直觀呈現(xiàn)教學(xué)素材,從而更好地激發(fā)學(xué)生的學(xué)習(xí)興趣,增大教學(xué)容量,提高教學(xué)效率。
本節(jié)課的教法采用的是情境引導(dǎo)和探究發(fā)現(xiàn)教學(xué)法,在教學(xué)過程中,通過適宜的問題情境引發(fā)新的認(rèn)知沖突;建立知識間的聯(lián)系。教師通過引導(dǎo)、指導(dǎo)、反饋、評價,不斷激發(fā)學(xué)生對問題的好奇心,使其在積極的自主活動中主動參與概念的建構(gòu)過程,并運用數(shù)學(xué)知識解決實際問題,享受數(shù)學(xué)學(xué)習(xí)帶來的樂趣。
本節(jié)課的學(xué)習(xí)方法采用自主探究法與合作交流法相結(jié)合。本節(jié)課數(shù)學(xué)活動貫穿始終,既有學(xué)生自主探究的,也有小組合作交流的,旨在讓學(xué)生從自主探究中發(fā)展,從合作交流中提高。
四、教學(xué)過程
新課標(biāo)指出,數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學(xué),本節(jié)課我主要安排以下教學(xué)環(huán)節(jié):
(一)自主探究
1、復(fù)習(xí)舊知,溫故知新
1、已知:在Rt△ABC中,∠C=900,∠A=350,則∠B=0
2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,則BC=
設(shè)計意圖:建構(gòu)注意主張教學(xué)應(yīng)從學(xué)生已有的知識體系出發(fā),相似的三角形性質(zhì)是本節(jié)課深入研究銳角正弦的認(rèn)知基礎(chǔ),這樣設(shè)計有利于引導(dǎo)學(xué)生順利地進入學(xué)習(xí)情境。
2、創(chuàng)設(shè)情境,提出問題
利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據(jù)問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學(xué)習(xí)銳角三角函數(shù)(板書課題)
設(shè)計意圖:以問題串的形式創(chuàng)設(shè)情境,引起學(xué)生的認(rèn)知沖突,使學(xué)生對舊知識產(chǎn)生設(shè)疑,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望‘
通過情境創(chuàng)設(shè),學(xué)生已激發(fā)了強烈的求知欲望,產(chǎn)生了強勁的學(xué)習(xí)動力,此時我把學(xué)生帶入下一環(huán)節(jié)———
(二)自主合作
1、發(fā)現(xiàn)問題,探求新知(要求學(xué)生獨立思考后小組內(nèi)合作探究)
1、(播放綠化荒山的視頻)課本P74問題與思考,求的值
2、課本P75思考:求的值
設(shè)計意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識的教學(xué)必須在學(xué)生自主探索,經(jīng)驗歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過觀察分析、獨立思考、小組交流等活動,引導(dǎo)學(xué)生歸納。
2、分析思考,加深理解
1、課本P75探索,
問:與有什么關(guān)系?你能解釋嗎?
2、正弦函數(shù)定義:在Rt△ABC中,∠C=900,,把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=
對定義的幾點說明:
1、sinA是一個完整的符號,表示∠A的正切習(xí)慣上省略“∠”的符號.
2、本章我們只研究銳角∠A的正弦.
3、sinA的范圍:0
設(shè)計意圖:數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)概念要明確其內(nèi)涵和外延(條件、結(jié)論、應(yīng)用范圍等),通過對銳角正弦定義闡述,使學(xué)生的認(rèn)知結(jié)構(gòu)得到優(yōu)化,知識體系得到完善,使學(xué)生的數(shù)學(xué)理解又一次突破思維的難點。
通過前面的學(xué)習(xí),學(xué)生已基本把握了本節(jié)課所要學(xué)習(xí)的內(nèi)容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學(xué)生引入到下一環(huán)節(jié)。
(三)自主展示(強化訓(xùn)練,鞏固雙基)
1、(例1課本P76)已知:在Rt△ABC中,∠C=900,根據(jù)圖中數(shù)據(jù)
求sinA和sinB
2、判斷對錯(學(xué)生口答)
(1)若銳角∠A=∠B,則sinA=sinB()
(2)sin600=sin300+sin300()
3、如圖,將Rt△ABC各邊擴大100倍,則tanA的值()
A.擴大100倍B.縮小100倍C.不變D.不確定
4、如圖,平面直角坐標(biāo)系中點P(3,-4),OP與x軸的夾角為∠1,求sin∠1的值。
設(shè)計意圖:幾道例題及練習(xí)題由淺入深、由易到難、各有側(cè)重,其中例1……例2……,體現(xiàn)新課標(biāo)提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計意圖是反饋教學(xué),內(nèi)化知識。
(四)自主拓展(提高升華)
1、課本習(xí)題28.1第1、2、題;
2、選做題:已知:在Rt△ABC中,∠C=900,sinA=,周長為60,求:斜邊AB的長?
以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸??偟脑O(shè)計意圖是反饋教學(xué),鞏固提高。
(五)自主評價(小結(jié)歸納,拓展深化)
我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識的簡單羅列,而應(yīng)該是優(yōu)化認(rèn)知結(jié)構(gòu),完善知識體系的一種有效手段,為充分發(fā)揮學(xué)生的主題作用,從學(xué)習(xí)的知識、方法、體驗是那個方面進行歸納,我設(shè)計了這么三個問題:
①通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些知識;
②通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么;
③通過本節(jié)課的學(xué)習(xí),你掌握了哪些學(xué)習(xí)數(shù)學(xué)的方法?
以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動,在教師的整體調(diào)控下,學(xué)生通過動腦思考、層層遞進,對知識的理解逐步深入,為了使課堂效益達到最佳狀態(tài),我設(shè)計以下問題加以追問:
1、sinA能為負嗎?
2、比較sin450和sin300的大小?
設(shè)計要求:(1)先學(xué)生獨立思考后小組內(nèi)探究
(2)各組交流展示探究結(jié)果,并且組內(nèi)或各組之間自主評價.
設(shè)計意圖:
(1)有一定難度需要學(xué)生進行合作探究,有利于培養(yǎng)學(xué)生善于反思的好習(xí)慣.
(2)學(xué)生通過互評自評,可以使學(xué)生全面了解自己的學(xué)習(xí)過程,感受自己的成長和進步,同時促進學(xué)生對學(xué)習(xí)及時進行反思,為教師全面了解學(xué)生的學(xué)習(xí)狀況,改進教學(xué),實施因材施教提供重要依據(jù)。我的說課到此結(jié)束,敬請各位老師批評、指正,謝謝!
教學(xué)反思
1.本教學(xué)設(shè)計以直角三角形為主線,力求體現(xiàn)生活化課堂的理念,讓學(xué)生在經(jīng)歷“問題情境——形成概念——應(yīng)用拓展——反思提高”的基本過程中,體驗知識間的內(nèi)在聯(lián)系,讓學(xué)生感受探究的樂趣,使學(xué)生在學(xué)中思,在思中學(xué)。
2.在教學(xué)過程中,重視過程,深化理解,通過學(xué)生的主動探究來體現(xiàn)他們的主體地位,教師是通過對學(xué)生參與學(xué)習(xí)的啟發(fā)、調(diào)整、激勵來體現(xiàn)自己的引導(dǎo)作用,對學(xué)生的主體意識和合作交流的能力起著積極作用。
3.正弦是生活中應(yīng)用較廣泛的三角函數(shù)。因而在本節(jié)課的設(shè)計中力求貼近生活。又從意大利比薩斜塔提煉出了數(shù)學(xué)問題,讓學(xué)生體會學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。
高中數(shù)學(xué)的內(nèi)容多,抽象性、理論性強,高中很注重自學(xué)能力的培養(yǎng),誰的自學(xué)能力強,那么在一定程度上影響著你的成績以及將來你發(fā)展的前途。同時還要注意以下幾點:
第一、對數(shù)學(xué)學(xué)科特點有清楚的認(rèn)識
數(shù)學(xué)的概念、方法、思想都是人類長期實踐中自然發(fā)展形成的,以數(shù)域的發(fā)展為例,從自然數(shù)到有理數(shù)到實數(shù)再到復(fù)數(shù),都是由自然的認(rèn)知沖突引起的。因此,在學(xué)習(xí)過程中我們有必要了解知識產(chǎn)生的背景,它的形成過程以及它的應(yīng)用,讓數(shù)學(xué)顯得合情合理,渾然天成。數(shù)學(xué)中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數(shù)學(xué)規(guī)則去學(xué)去想就能融會貫通,但是如果不把來龍去脈想清楚而是“想當(dāng)然”的`話,那就學(xué)不下去了。
第二、要改變一個觀念。
有人會說自己的基礎(chǔ)不好。那什么是基礎(chǔ)?今天所學(xué)的知識就是明天的基礎(chǔ)。明天學(xué)習(xí)的知識就是后天的基礎(chǔ),
所以只要學(xué)好每一天的內(nèi)容,那么你打的基礎(chǔ)就是最扎實的了。所以現(xiàn)在你們是在同一個起跑線上的,無所謂基礎(chǔ)好不好。
第三、學(xué)數(shù)學(xué)要摸索自己的學(xué)習(xí)方法
學(xué)習(xí)重在方法,好的學(xué)習(xí)方法讓學(xué)生事半功倍。學(xué)習(xí)、掌握并能靈活應(yīng)用數(shù)學(xué)的途徑有很多,做習(xí)題、用數(shù)學(xué)知識解決各種問題是必需的,理解、學(xué)會證明、領(lǐng)會思想、掌握方法也是必需的。同時,要注意前后知識的銜接,類比地學(xué)、聯(lián)系地學(xué),既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。
相關(guān)文章推薦:
1.高中開學(xué)第一周教學(xué)反思
2.開學(xué)第一課教學(xué)反思精選
3.20--初中開學(xué)第一課教學(xué)反思【精選】
4.高三開學(xué)教學(xué)反思
5.高一信息技術(shù)教學(xué)反思
6.開學(xué)第一課語文教學(xué)反思
7.幼兒園開學(xué)第一課反思
8.高中英語教學(xué)反思精選
9.高中生物教育反思
10.20--開學(xué)第一課教學(xué)反思
一、說教材
等差數(shù)列為人教版必修5第二章第二節(jié)的內(nèi)容。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的性質(zhì)與應(yīng)用等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。
二、說學(xué)情
對于我校的高中學(xué)生,知識經(jīng)驗比較貧乏,雖然他們的智力發(fā)展已到了形式運演階段,但并不具備教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。
三、說教學(xué)目標(biāo)
【知識與技能】能夠準(zhǔn)確的說出等差數(shù)列的特點;能夠推導(dǎo)出等差數(shù)列的通項公式,并可以利用等差數(shù)列解決些簡單的實際問題。
【過程與方法】在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,鍛煉知識、方法遷移能力;通過階梯性練習(xí),提高分析問題和解決問題的能力。
【情感態(tài)度價值觀】通過對等差數(shù)列的研究,激發(fā)主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
四、說教學(xué)重難點
【重點】等差數(shù)列的概念,等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
【難點】等差數(shù)列通項公式的推導(dǎo),用“數(shù)學(xué)建模”的思想解決實際問題。
五、說教法與學(xué)法
數(shù)學(xué)教學(xué)是師生之間交往活動共同發(fā)展的課程,結(jié)合本節(jié)課的特點,我采取指導(dǎo)自主學(xué)習(xí)方法,并在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
六、說教學(xué)過程
(一)復(fù)習(xí)導(dǎo)入
類比函數(shù),復(fù)習(xí)提問數(shù)列的函數(shù)意義,即數(shù)列可看作是定義域為正整數(shù)對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的解析式。
設(shè)計意圖:通過復(fù)習(xí),為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備,將課堂設(shè)置成為階梯型教學(xué),消除學(xué)生的畏難情緒。
(二)新課教學(xué)
教師創(chuàng)設(shè)具體情境,從具體事例中抽象出數(shù)學(xué)概念。
1.小明目前會100個單詞,他打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92
2.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25
通過練習(xí)1和2引出兩個具體的等差數(shù)列,初步認(rèn)識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。
接下來由學(xué)生嘗試總結(jié)歸納等差數(shù)列的定義:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,
這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
(三)深化概念
教師請學(xué)生深度剖析等差數(shù)列的概念,進一步強調(diào)
①“從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)”);
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達式:an+1-an=d(n≥1)
同時為配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。其中第一個數(shù)列公差小于0,第二個數(shù)列公差大于0,第三個數(shù)列公差等于0。由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0。
(四)歸納通項公式
在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法。由學(xué)生研究,分組討論上述四個等差數(shù)列的通項公式。通過總結(jié)對比找出共同點猜想一般等差數(shù)列的通向公式應(yīng)為怎樣的形式整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點。
猜想等差數(shù)列的通項公式:an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法---迭加法:
在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。
利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個等式。
對照已歸納出的通項公式啟發(fā)學(xué)生想出將n-1個等式相加。證出通項公式。
在這里通過該知識點引入迭加法這一數(shù)學(xué)思想,逐步達到“注重方法,凸現(xiàn)思想”的教學(xué)要求
接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2,
即an=2n-1,以此來鞏固等差數(shù)列通項公式的運用。
同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。
(五)應(yīng)用舉例
這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。
先讓學(xué)生求等差數(shù)列的第20項、30項等。向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。
此外還可以聯(lián)系實際建模問題,如建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?
這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實際問題轉(zhuǎn)化為數(shù)學(xué)模型--等差數(shù)列。
設(shè)置此題的目的:
1.加強同學(xué)們對應(yīng)用題的綜合分析能力;
2.通過數(shù)學(xué)實際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;
3.再者通過數(shù)學(xué)實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實際問題的“數(shù)學(xué)建?!钡臄?shù)學(xué)思想方法。
(六)小結(jié)作業(yè)
小結(jié):(由學(xué)生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學(xué)表達式。
強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)。
2.等差數(shù)列的通項公式:an=a1+(n-1),會知三求一。
3.用“數(shù)學(xué)建?!彼枷敕椒ń鉀Q實際問題
作業(yè):現(xiàn)實生活中還有哪些等差數(shù)列的實際應(yīng)用呢?根據(jù)實際問題自己編寫兩道等差數(shù)列的題目并進行求解。
激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,以及認(rèn)識到學(xué)習(xí)數(shù)學(xué)的重要性,將數(shù)學(xué)知識應(yīng)用于實際問題的解決不僅回顧加深了本堂課的教學(xué)內(nèi)容,開闊學(xué)生思維,還鍛煉了學(xué)生學(xué)以致用、觀察分析問題解決問題的能力。
七、說板書設(shè)計
在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。
教學(xué)目標(biāo):
掌握二倍角的正弦、余弦、正切公式,能用上述公式進行簡單的求值、化簡、恒等證明;引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,讓學(xué)生體會化歸這一基本數(shù)學(xué)思想在發(fā)現(xiàn)中所起的作用,培養(yǎng)學(xué)生的創(chuàng)新意識.
教學(xué)重點:
二倍角公式的推導(dǎo)及簡單應(yīng)用.
教學(xué)難點:
理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù).
教學(xué)過程:
Ⅰ.課題導(dǎo)入
前一段時間,我們共同探討了和角公式、差角公式,今天,我們繼續(xù)探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當(dāng)兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請同學(xué)們試推.
先回憶和角公式
sin(α+β)=sinαcosβ+cosαsinβ
當(dāng)α=β時,sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
當(dāng)α=β時cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
當(dāng)α=β時,tan2α=2tanα1-tan2α
Ⅱ.講授新課
同學(xué)們推證所得結(jié)果是否與此結(jié)果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α
同學(xué)們是否也考慮到了呢?
另外運用這些公式要注意如下幾點:
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當(dāng)α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)時才成立,否則不成立(因為當(dāng)α=π2 +kπ,k∈Z時,tanα的值不存在;當(dāng)α=π4 +kπ2 ,k∈Z時tan2α的值不存在).
當(dāng)α=π2 +kπ(k∈Z)時,雖然tanα的值不存在,但tan2α的值是存在的,這時求tan2α的值可利用誘導(dǎo)公式:
即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情況下,sin2α≠2sinα
例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情況下,才有可能成立[當(dāng)且僅當(dāng)α=kπ(k∈Z)時,sin2α=2sinα=0成立].
同樣在一般情況下cos2α≠2cosαtan2α≠2tanα
(3)倍角公式不僅可運用于將2α作為α的2倍的情況,還可以運用于諸如將4α作為2α的2倍,將α作為 α2 的2倍,將 α2 作為 α4 的2倍,將3α作為 3α2 的2倍等等.
一、教材分析
1、地位及作用
圓錐曲線是一個重要的幾何模型,有許多幾何性質(zhì),這些性質(zhì)在日常生活、生產(chǎn)和科學(xué)技術(shù)中有著廣泛的應(yīng)用。同時,圓錐曲線也是體現(xiàn)數(shù)形結(jié)合思想的重要素材。
推導(dǎo)橢圓的標(biāo)準(zhǔn)方程的方法對雙曲線、拋物線方程的推導(dǎo)具有直接的類比作用,為學(xué)習(xí)雙曲線、拋物線內(nèi)容提供了基本模式和理論基礎(chǔ)。因此本節(jié)課具有承前啟后的作用,是本章的重點內(nèi)容。
2、教學(xué)內(nèi)容與教材處理
橢圓的標(biāo)準(zhǔn)方程共兩課時,第一課時所研究的是橢圓標(biāo)準(zhǔn)方程的建立及其簡單運用,涉及的數(shù)學(xué)方法有觀察、比較、歸納、猜想、推理驗證等,我將以課堂教學(xué)的組織者、引導(dǎo)者、合作者的身份,組織學(xué)生動手實驗、歸納猜想、推理驗證,引導(dǎo)學(xué)生逐個突破難點,自主完成問題,使學(xué)生通過各種數(shù)學(xué)活動,掌握各種數(shù)學(xué)基本技能,初步學(xué)會從數(shù)學(xué)角度去觀察事物和思考問題,產(chǎn)生學(xué)習(xí)數(shù)學(xué)的愿望和興趣。
3、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱和學(xué)生已有的認(rèn)知基礎(chǔ),我將本節(jié)課的教學(xué)目標(biāo)確定如下:
1、知識目標(biāo)
①建立直角坐標(biāo)系,根據(jù)橢圓的定義建立橢圓的標(biāo)準(zhǔn)方程;
②能根據(jù)已知條件求橢圓的標(biāo)準(zhǔn)方程;
③進一步感受曲線方程的概念,了解建立曲線方程的基本方法,體會數(shù)形結(jié)合的數(shù)學(xué)思想。
2、能力目標(biāo)
①讓學(xué)生感知數(shù)學(xué)知識與實際生活的密切聯(lián)系,培養(yǎng)解決實際問題的能力;
②培養(yǎng)學(xué)生的觀察能力、歸納能力、探索發(fā)現(xiàn)能力;
③提高運用坐標(biāo)法解決幾何問題的能力及運算能力。
3、情感目標(biāo)
①親身經(jīng)歷橢圓標(biāo)準(zhǔn)方程的獲得過程,感受數(shù)學(xué)美的熏陶;
②通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學(xué)的理性和嚴(yán)謹(jǐn);
③養(yǎng)成實事求是的科學(xué)態(tài)度和契而不舍的鉆研精神,形成學(xué)習(xí)數(shù)學(xué)知識的積極態(tài)度。
4、重點難點
基于以上分析,我將本課的教學(xué)重點、難點確定為:
①重點:感受建立曲線方程的基本過程,掌握橢圓的標(biāo)準(zhǔn)方程及其推導(dǎo)方法;
②難點:橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)。
二、教法設(shè)計
在教法上,主要采用探究性教學(xué)法和啟發(fā)式教學(xué)法。以啟發(fā)、引導(dǎo)為主,采用設(shè)疑的形式,逐步讓學(xué)生進行探究性的學(xué)習(xí)。探究性學(xué)習(xí)就是充分利用了青少年學(xué)生富有創(chuàng)造性和好奇心,敢想敢為,對新事物具有濃厚的興趣的特點。讓學(xué)生根據(jù)教學(xué)目標(biāo)的要求和題目中的已知條件,自覺主動地創(chuàng)造性地去分析問題、討論問題、解決問題。
三、學(xué)法設(shè)計
通過創(chuàng)設(shè)情境,充分調(diào)動學(xué)生已有的學(xué)習(xí)經(jīng)驗,讓學(xué)生經(jīng)歷“觀察——猜想——證明——應(yīng)用”的過程,發(fā)現(xiàn)新的知識,把學(xué)生的潛意識狀態(tài)的好奇心變?yōu)樽杂X求知的創(chuàng)新意識。又通過實際操作,使剛產(chǎn)生的數(shù)學(xué)知識得到完善,提高了學(xué)生動手動腦的能力和增強了研究探索的綜合素質(zhì)。
四、學(xué)情分析
1、能力分析
①學(xué)生已初步掌握用坐標(biāo)法研究直線和圓的方程;
②對含有兩個根式方程的化簡能力薄弱。
2、認(rèn)知分析
①學(xué)生已初步熟悉求曲線方程的基本步驟;
②學(xué)生已經(jīng)掌握直線和圓的方程及圓錐曲線的概念,對曲線的方程的概念有一定的了解;
③學(xué)生已經(jīng)初步掌握研究直線和圓的基本方法。
3、情感分析
學(xué)生具有積極的學(xué)習(xí)態(tài)度,強烈的探究欲望,能主動參與研究。
五、教學(xué)程序
從建構(gòu)主義的角度來看,數(shù)學(xué)學(xué)習(xí)是指學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動,在數(shù)學(xué)活動過程中,學(xué)生與教材及教師產(chǎn)生交互作用,形成了數(shù)學(xué)知識、技能和能力,發(fā)展了情感態(tài)度和思維品質(zhì)。基于這一理論,我把這一節(jié)課的教學(xué)程序分成六個步驟來進行,下面我向各位作詳細說明:
教學(xué)目標(biāo)
(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;
(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;
(3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);
(4)會分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;
(5)通過對排列應(yīng)用問題的學(xué)習(xí),讓學(xué)生通過對具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
教學(xué)建議
一、知識結(jié)構(gòu)
二、重點難點分析
本小節(jié)的重點是排列的定義、排列數(shù)及排列數(shù)的公式,并運用這個公式去解決有關(guān)排列數(shù)的應(yīng)用問題.難點是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題.突破重點、難點的關(guān)鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應(yīng)用問題當(dāng)中.
從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列.因此,兩個相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同.排列數(shù)是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計算相應(yīng)的排列數(shù).排列與排列數(shù)是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數(shù).從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當(dāng)于一個排列,而這種有序集的個數(shù),就是相應(yīng)的排列數(shù).
公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解.要重點分析好 的推導(dǎo).
排列的應(yīng)用題是本節(jié)教材的難點,通過本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問題的能力.
在分析應(yīng)用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時也應(yīng)盡量采用.
在教學(xué)排列應(yīng)用題時,開始應(yīng)要求學(xué)生寫解法要有簡要的文字說明,防止單純的只寫一個排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求.
三、教法建議
①在講解排列數(shù)的概念時,要注意區(qū)分“排列數(shù)”與“一個排列”這兩個概念.一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數(shù),而是具體的一件事;排列數(shù)是指“從n個不同元素中取出m個元素的所有排列的個數(shù)”,它是一個數(shù).例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:
ab,ac,ba,bc,ca,cb,
其中每一種都叫一個排列,共有6種,而數(shù)字6就是排列數(shù),符號 表示排列數(shù).
②排列的定義中包含兩個基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”.
從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列.
在定義中“一定順序”就是說與位置有關(guān),在實際問題中,要由具體問題的性質(zhì)和條件來決定,這一點要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別.
在排列的定義中 ,如果 有的書上叫選排列,如果 ,此時叫全排列.
要特別注意,不加特殊說明,本章不研究重復(fù)排列問題.
③關(guān)于排列數(shù)公式的推導(dǎo)的教學(xué).公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解.課本上用的是不完全歸納法,先推導(dǎo) , ,…,再推廣到 ,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的.
導(dǎo)出公式 后要分析這個公式的構(gòu)成特點,以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“m”比較復(fù)雜的時候把公式寫錯.這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數(shù)是n,后面每個因數(shù)都比它前面一個因數(shù)少1,最后一個因數(shù)是 ,共m個因數(shù)相乘.”這實際是講三個特點:第一個因數(shù)是什么?最后一個因數(shù)是什么?一共有多少個連續(xù)的自然數(shù)相乘.
公式 是在引出全排列數(shù)公式 后,將排列數(shù)公式變形后得到的公式.對這個公式指出兩點:(1)在一般情況下,要計算具體的排列數(shù)的值,常用前一個公式,而要對含有字母的排列數(shù)的式子進行變形或作有關(guān)的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;(2)為使這個公式在 時也能成立,規(guī)定 ,如同 時 一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋.
④建議應(yīng)充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解.
⑤學(xué)生在開始做排列應(yīng)用題的作業(yè)時,應(yīng)要求他們寫出解法的簡要說明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實.隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求.
數(shù)列的相關(guān)概念
1.數(shù)列概念
①數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個定義域為正整數(shù)集N--或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。
②用函數(shù)的觀點認(rèn)識數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數(shù)列和以遞推公式給出數(shù)列。
③函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項公式。
2。2。1等差數(shù)列學(xué)案
一、預(yù)習(xí)問題:
1、等差數(shù)列的定義:一般地,如果一個數(shù)列從起,每一項與它的前一項的差等于同一個,那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的,通常用字母表示。
2、等差中項:若三個數(shù)組成等差數(shù)列,那么A叫做與的,
即或。
3、等差數(shù)列的單調(diào)性:等差數(shù)列的公差時,數(shù)列為遞增數(shù)列;時,數(shù)列為遞減數(shù)列;時,數(shù)列為常數(shù)列;等差數(shù)列不可能是。
4、等差數(shù)列的通項公式:。
5、判斷正誤:
①1,2,3,4,5是等差數(shù)列;()
②1,1,2,3,4,5是等差數(shù)列;()
③數(shù)列6,4,2,0是公差為2的等差數(shù)列;()
④數(shù)列是公差為的等差數(shù)列;()
⑤數(shù)列是等差數(shù)列;()
⑥若,則成等差數(shù)列;()
⑦若,則數(shù)列成等差數(shù)列;()
⑧等差數(shù)列是相鄰兩項中后項與前項之差等于非零常數(shù)的數(shù)列;()
⑨等差數(shù)列的公差是該數(shù)列中任何相鄰兩項的差。()
6、思考:如何證明一個數(shù)列是等差數(shù)列。
二、實戰(zhàn)操作:
例1、(1)求等差數(shù)列8,5,2,的第20項。
(2)是不是等差數(shù)列中的項?如果是,是第幾項?
(3)已知數(shù)列的公差則
例2、已知數(shù)列的通項公式為,其中為常數(shù),那么這個數(shù)列一定是等差數(shù)列嗎?
例3、已知5個數(shù)成等差數(shù)列,它們的和為5,平方和為求這5個數(shù)。
一、教學(xué)目標(biāo):
1、知識與技能:
了解平面向量基本定理及其意義,理解平面里的任何一個向量都可以用兩個不共線的向量來表示;能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表示。
2、過程與方法:
讓學(xué)生經(jīng)歷平面向量基本定理的探索與發(fā)現(xiàn)的形成過程,體會由特殊到一般和數(shù)形結(jié)合的數(shù)學(xué)思想,初步掌握應(yīng)用平面向量基本定理分解向量的方法,培養(yǎng)學(xué)生分析問題與解決問題的能力。
3、情感、態(tài)度和價值觀
通過對平面向量基本定理的學(xué)習(xí),激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)習(xí)積極性,增強學(xué)生向量的應(yīng)用意識,并培養(yǎng)學(xué)生合作交流的意識及積極探索勇于發(fā)現(xiàn)的學(xué)習(xí)品質(zhì)、
二、教學(xué)重點:
平面向量基本定理、
三、教學(xué)難點:
平面向量基本定理的理解與應(yīng)用、
四、教學(xué)方法:
探究發(fā)現(xiàn)、講練結(jié)合
五、授課類型:
新授課
六、教具:
電子白板、黑板和課件
七、教學(xué)過程:
(一)情境引課,板書課題
由導(dǎo)彈的發(fā)射情境,引出物理中矢量的分解,進而探究我們數(shù)學(xué)中的向量是不是也可以沿兩個不同方向的向量進行分解呢?
(二)復(fù)習(xí)鋪路,漸進新課
在共線向量定理的復(fù)習(xí)中,自然地、漸進地融入到平面向量基本定理的師生互動合作的探究與發(fā)現(xiàn)中去,感受著從特殊到一般、分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想碰撞的火花,體驗著學(xué)習(xí)的快樂。
(三)歸納總結(jié),形成定理
讓學(xué)生在發(fā)現(xiàn)學(xué)習(xí)的過程中歸納總結(jié)出平面向量基本定理,并給出基底的定義。
(四)反思定理,解讀要點
反思平面向量基本定理的實質(zhì)即向量分解,思考基底的不共線、不惟一和非零性及實數(shù)對
的存在性和唯一性。
(五)跟蹤練習(xí),反饋測試
及時跟蹤練習(xí),反饋測試定理的理解程度。
(六)講練結(jié)合,鞏固理解
即講即練定理的應(yīng)用,講練結(jié)合,進一步鞏固理解平面向量基本定理。
(七)夾角概念,順勢得出
不共線向量的不同方向的位置關(guān)系怎么表示,夾角概念順勢得出。然后數(shù)形結(jié)合,講清本質(zhì):夾角共起點。再結(jié)合例題鞏固加深。
(八)課堂小結(jié),畫龍點睛
回顧本節(jié)的學(xué)習(xí)過程,小結(jié)學(xué)習(xí)要點及數(shù)學(xué)思想方法,老師的“教”與學(xué)生的“學(xué)”渾然一體,一氣呵成。
(九)作業(yè)布置,回味思考。
布置課后作業(yè),檢驗教學(xué)效果?;匚端伎迹永斫舛ɡ淼膶嵸|(zhì)。
八、板書設(shè)計:
1、平面向量基本定理:如果是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù)
2、基底:
(1)不共線向量
叫做表示這一平面內(nèi)所有向量的一組基底;
(2)基底:不共線,不唯一,非零
(3)基底給定,分解形式唯一,實數(shù)對
存在且唯一;
(4)基底不同,分解形式不唯一,實數(shù)對
可同可異。
例1例2
3、夾角:
(1)兩向量共起點;
(2)夾角范圍:
例3
4、小結(jié)
5、作業(yè)
一、教學(xué)目標(biāo)
1.知識與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。
2.過程與方法:通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀:提高學(xué)生空間想象力,體會三視圖的作用。
二、教學(xué)重點難點
重點:畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學(xué)法指導(dǎo):
觀察、動手實踐、討論、類比。
四、教學(xué)過程
(一)創(chuàng)設(shè)情景,揭開課題
展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的`投影圖;
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
(三)鞏固練習(xí)
課本P15練習(xí)1、2;P20習(xí)題1.2[A組]2。
(四)歸納整理
請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)布置作業(yè)
課本P20習(xí)題1.2[A組]1。
教學(xué)目標(biāo):
1、橢圓是圓錐曲線的一種,是高中數(shù)學(xué)教學(xué)中的重點和難點,所以這部分內(nèi)容中的知識點學(xué)生必須達到理解、應(yīng)用的水平;
2、利用投影、計算機模擬動點的運動,增強直觀性,激勵學(xué)生的學(xué)習(xí)動機,培養(yǎng)學(xué)生的數(shù)學(xué)想象和抽象思維能力。
教學(xué)重點:對橢圓定義的理解,其中a>c容易出錯。
教學(xué)難點:方程的推導(dǎo)過程。
教學(xué)過程(www.fwsir.com):
(1)復(fù)習(xí)
提問:動點軌跡的一般求法?
(通過回憶性質(zhì)的提問,明示這節(jié)課所要學(xué)的內(nèi) 容與原來所學(xué)知識之間的內(nèi)在聯(lián)系。并為后面橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)作好準(zhǔn)備。)
(2)引入
舉例:橢圓是常見的圖形,如:汽車油罐的橫截面,立體幾何中圓的直觀圖,天體中,行星繞太陽運行的軌道等等;
計算機:動態(tài)演示行星運行的軌道。
(進一步使學(xué)生明確學(xué)習(xí)橢圓的重要性和必要性,借計算機形成生動的直觀,使學(xué)生印象加深,以便更好地掌握橢圓的形狀。)
(3)教學(xué)實施
投影:橢圓的定義:
平面內(nèi)與兩個定點F1、F2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做焦距(一般用2c表示)
常數(shù)一般用2表示。(講解定義時要注意條件:)
計算機:動態(tài)模擬動點軌跡的形成過程。
提問:如何求軌跡的方程?
(引導(dǎo)學(xué)生推導(dǎo)橢圓的標(biāo)準(zhǔn)方程)
板書:橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)過程。(略)
(推導(dǎo)中注意:1)結(jié)合已畫出的圖形建立坐標(biāo)系,容易為學(xué)生所接受;2)在推導(dǎo)過程中,要抓住“怎樣消去方程中的根式”這一關(guān)鍵問題,演算雖較繁,也能迎刃而解;3)其中焦點為F1(,0)、F2(c,0),;4)如果焦點在軸上,焦點為F1(0,)、F2(0,c),只要將方程中,互換就可得到它的`方程)
投影:橢圓的標(biāo)準(zhǔn)方程:
()
()
投影:例1平面內(nèi)兩個定點的距離是8,寫出到這兩個定點的距離的和是10的點的軌跡方程
(由橢圓的定義可知:所求軌跡為橢圓;則只要求出、、即可)
形成性練習(xí):課本P74:2,3
(4)小結(jié) 本節(jié)課學(xué)習(xí)了橢圓的定義及標(biāo)準(zhǔn)方程,應(yīng)注意以下幾點:
①橢圓的定義中,
②橢圓的標(biāo)準(zhǔn)方程中,焦點的位置看,的分母大小來確定
③、、的幾何意義
(5)作業(yè)
P80:2,4(1)(3)
1.1.1任意角
教學(xué)目標(biāo)
(一)知識與技能目標(biāo)
理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念.
(二)過程與能力目標(biāo)
會建立直角坐標(biāo)系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.
(三)情感與態(tài)度目標(biāo)
1.提高學(xué)生的推理能力;
2.培養(yǎng)學(xué)生應(yīng)用意識.教學(xué)重點
任意角概念的理解;區(qū)間角的集合的書寫.教學(xué)難點
終邊相同角的集合的表示;區(qū)間角的集合的書寫.
教學(xué)過程
一、引入:
1.回顧角的定義
①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角.
②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.
二、新課:
1.角的有關(guān)概念:
①角的定義:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.
②角的名稱:
③角的分類:A
正角:按逆時針方向旋轉(zhuǎn)形成的角零角:射線沒有任何旋轉(zhuǎn)形成的角
負角:按順時針方向旋轉(zhuǎn)形成的角
④注意:
⑴在不引起混淆的情況下,“角α”或“∠α”可以簡化成“α”;
⑵零角的終邊與始邊重合,如果α是零角α=0°;
⑶角的概念經(jīng)過推廣后,已包括正角、負角和零角.
⑤練習(xí):請說出角α、β、γ各是多少度?
2.象限角的概念:
①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角.
例1.在直角坐標(biāo)系中,作出下列各角,并指出它們是第幾象限的角.
⑴60°;⑵120°;⑶240°;⑷300°;⑸420°;⑹480°;
答:分別為1、2、3、4、1、2象限角.
3.探究:教材P3面
終邊相同的角的表示:
所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個集合S={ββ=α+
k·360°,
k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個周角的和.注意:⑴k∈Z
⑵α是任一角;
⑶終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個,它們相差
360°的整數(shù)倍;
⑷角α+k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.
例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.
⑴-120°;
⑵640°;
⑶-950°12’.
答:⑴240°,第三象限角;
⑵280°,第四象限角;
⑶129°48’,第二象限角;
例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示).解:{αα=90°+n·180°,n∈Z}.
例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.
4.課堂小結(jié)
①角的定義;
②角的分類:
正角:按逆時針方向旋轉(zhuǎn)形成的角零角:射線沒有任何旋轉(zhuǎn)形成的角
負角:按順時針方向旋轉(zhuǎn)形成的角
③象限角;
④終邊相同的角的表示法.
5.課后作業(yè):
①閱讀教材P2-P5;
②教材P5練習(xí)第1-5題;
③教材P.9習(xí)題1.1第1、2、3題思考題:已知α角是第三象限角,則2α,
解:??角屬于第三象限,
?k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)即(2k+1)360°<2α<(2k+1)360°+180°(k∈Z)
故2α是第一、二象限或終邊在y軸的非負半軸上的角.又k·180°+90°<
各是第幾象限角?
<k·180°+135°(k∈Z).
<n·360°+135°(n∈Z),
當(dāng)k為偶數(shù)時,令k=2n(n∈Z),則n·360°+90°<此時,
屬于第二象限角
<n·360°+315°(n∈Z),
當(dāng)k為奇數(shù)時,令k=2n+1(n∈Z),則n·360°+270°<此時,
屬于第四象限角
因此
屬于第二或第四象限角.
1.1.2弧度制
(一)
教學(xué)目標(biāo)
(二)知識與技能目標(biāo)
理解弧度的意義;了解角的集合與實數(shù)集R之間的可建立起一一對應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).
(三)過程與能力目標(biāo)
能正確地進行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長公式及扇形的面積公式,并能運用公式解決一些實際問題
(四)情感與態(tài)度目標(biāo)
通過新的度量角的單位制(弧度制)的引進,培養(yǎng)學(xué)生求異創(chuàng)新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學(xué)生感受弧長及扇形面積公式在弧度制下的簡潔美.教學(xué)重點
弧度的概念.弧長公式及扇形的面積公式的推導(dǎo)與證明.教學(xué)難點
“角度制”與“弧度制”的區(qū)別與聯(lián)系.
教學(xué)過程
一、復(fù)習(xí)角度制:
初中所學(xué)的角度制是怎樣規(guī)定角的度量的?規(guī)定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.
二、新課:
1.引入:
由角度制的定義我們知道,角度是用來度量角的`,角度制的度量是60進制的,運用起來不太方便.在數(shù)學(xué)和其他許多科學(xué)研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?
2.定義
我們規(guī)定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下,1弧度記做1rad.在實際運算中,常常將rad單位省略.
3.思考:
(1)一定大小的圓心角?所對應(yīng)的弧長與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?
(2)引導(dǎo)學(xué)生完成P6的探究并歸納:弧度制的性質(zhì):
①半圓所對的圓心角為
②整圓所對的圓心角為
③正角的弧度數(shù)是一個正數(shù).
④負角的弧度數(shù)是一個負數(shù).
⑤零角的弧度數(shù)是零.
⑥角α的弧度數(shù)的絕對值α=.
4.角度與弧度之間的轉(zhuǎn)換:
①將角度化為弧度:
②將弧度化為角度:
5.常規(guī)寫法:
①用弧度數(shù)表示角時,常常把弧度數(shù)寫成多少π的形式,不必寫成小數(shù).
②弧度與角度不能混用.
弧長等于弧所對應(yīng)的圓心角(的弧度數(shù))的絕對值與半徑的積.
例1.把67°30’化成弧度.
例2.把?rad化成度.
例3.計算:
(1)sin4
(2)tan1.5.
8.課后作業(yè):
①閱讀教材P6–P8;
②教材P9練習(xí)第1、2、3、6題;
③教材P10面7、8題及B2、3題.
教學(xué)目標(biāo):
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
(2)理解直線與二元一次方程的關(guān)系及其證明
(3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點.
教學(xué)重點、難點:直線方程的一般式.直線與二元一次方程(、不同時為0)的對應(yīng)關(guān)系及其證明.
教學(xué)用具:計算機
教學(xué)方法:啟發(fā)引導(dǎo)法,討論法
教學(xué)過程:
下面給出教學(xué)實施過程設(shè)計的簡要思路:
教學(xué)設(shè)計思路:
(一)引入的設(shè)計
前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.
肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個問題:
問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.
肯定學(xué)生回答后強調(diào)“也是二元一次方程,都是因為未知數(shù)有兩個,它們的最高次數(shù)為一次”.
啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)?各小組可以討論討論.
學(xué)生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識統(tǒng)一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計
這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.
學(xué)生或獨立研究,或合作研究,教師巡視指導(dǎo).
經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在.
當(dāng)存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程.
當(dāng)不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時教師引導(dǎo)學(xué)生,逐步認(rèn)識到把它看成二元一次方程的合理性:
平面直角坐標(biāo)系中直線上點的坐標(biāo)形式,與其它直線上點的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.
綜合兩種情況,我們得出如下結(jié)論:
在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的關(guān)于、的二元一次方程.
至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成或的形式,準(zhǔn)確地說應(yīng)該是“要么形如這樣,要么形如這樣的方程”.
同學(xué)們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.
這樣上邊的結(jié)論可以表述如下:
在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程.
啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?
【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?
師生共同討論,評價不同思路,達成共識:
回顧上邊解決問題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程(其中、不同時為0)系數(shù)是否為0恰好對應(yīng)斜率是否存在,即
(1)當(dāng)時,方程可化為
這是表示斜率為、在軸上的截距為的直線.
(2)當(dāng)時,由于、不同時為0,必有,方程可化為
這表示一條與軸垂直的直線.
因此,得到結(jié)論:
在平面直角坐標(biāo)系中,任何形如(其中、不同時為0)的二元一次方程都表示一條直線.
為方便,我們把(其中、不同時為0)稱作直線方程的一般式是合理的.
【動畫演示】
演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線.
至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應(yīng)關(guān)系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關(guān)系.
(三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計
略
【教學(xué)目標(biāo)】
1、知識與技能:
(1)掌握圓的標(biāo)準(zhǔn)方程。
(2)會由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程。
(3)會判斷點與圓的位置關(guān)系。
2、過程與方法:
(1)進一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力。
(2)加深對數(shù)形結(jié)合思想的理解和加強待定系數(shù)法的運用。
3、情感、態(tài)度與價值觀:
(1)培養(yǎng)學(xué)生主動探究知識、合作交流的意識。
(2)讓學(xué)生感受數(shù)學(xué),體驗數(shù)學(xué);從走入數(shù)學(xué)到走出數(shù)學(xué),生活處處有數(shù)學(xué),數(shù)學(xué)就在我身邊,體會到數(shù)學(xué)知識、思想方法和精神來源于生活,還要服務(wù)于生活;寓思想教育于教學(xué)。讓學(xué)生體會到數(shù)學(xué)的美以及數(shù)學(xué)的價值與魅力。
【學(xué)情分析】
對圓的方程有個初步的認(rèn)識以及在上章學(xué)習(xí)了直線與方程的基礎(chǔ)上,學(xué)習(xí)圓的方程,學(xué)生還是可以接受。在教學(xué)過程中,主要采用啟發(fā)性原則,并且與已經(jīng)學(xué)過的直線方程進行類比,發(fā)揮學(xué)生的思維能力、想象能力,由易到難,逐步加深。
【重點難點】
重點:圓的標(biāo)準(zhǔn)方程和圓的標(biāo)準(zhǔn)方程特點的明確。
難點:會根據(jù)不同的條件寫出圓的標(biāo)準(zhǔn)方程。
【教學(xué)過程】
第一學(xué)時評論(0)教學(xué)目標(biāo)
教學(xué)活動活動1【導(dǎo)入】新聞聯(lián)播片段
請結(jié)合數(shù)學(xué)中圓知識,談?wù)勀銓@句話的理解?
活動2【講授】問題1.
在直角坐標(biāo)系中,以A(a,b)為圓心,r為半徑的圓上的動點M(x,y)滿足怎樣的關(guān)系式?
活動3【活動】想一想!
圓心在坐標(biāo)原點,半徑長為r的圓的方程是什么?
活動4【導(dǎo)入】試試你的眼力!判斷下列方程是否為圓的標(biāo)準(zhǔn)方程:
(x-2)2+y=8;
(x-2)2-y2=8;
(2x-2)2+y2=8;
(x-2)2+y2=0;
(x-2)2+y2=a;
(2x-2)2+(2y-4)2=8。
答案:都不是,第6個可以化為圓的標(biāo)準(zhǔn)方程。
活動5【活動】再試一下!
圓(x1)2+(ay2)2=1a的圓心坐標(biāo)和半徑分別是什么?
答案:圓心坐標(biāo)為(1,—2),半徑是√2
活動6【活動】問題2.
要寫出圓的標(biāo)準(zhǔn)方程,只需知道圓的哪些量?
怎樣判斷一點是否在一個圓上?
學(xué)生回答,教師點評.
活動7【活動】例1
寫出圓心為A(2,-3),半徑長為5的圓的方程,并判斷點M1(5,7),M2((√5,1)是否在這個圓上。
學(xué)生回答,教師點評后,學(xué)生閱讀教科書上本題解法.
活動8【活動】探究
你能判斷點M2在圓內(nèi)還是在圓外嗎?
學(xué)生回答,教師點評。
點與圓心距離比半徑大等價于點在圓外。
點與圓心距離比半徑小等價于點在圓內(nèi)。
點與圓心距離等于半徑等價于點在圓外等價于點的坐標(biāo)滿足方程。
活動9【講授】解題收獲
1.從確定圓的兩個要素即圓心和半徑入手,直接寫出圓的標(biāo)準(zhǔn)方程——直接法。
2.類似于點與直線方程的關(guān)系:點在圓上等價于點坐標(biāo)滿足圓方程活動10【活動】試一試!
例2△ABC的三個頂點的坐標(biāo)分別是A(5,1),B(7,-3),C(2,-8),求它的外接圓的方程.
師:△ABC的外接圓的圓心簡稱什么?
學(xué)生回答
師:△ABC的外心是什么的交點?
學(xué)生回答
師:求圓的標(biāo)準(zhǔn)方程,只需知道圓心坐標(biāo)和圓的半徑。這三點都在圓上,其坐標(biāo)一定是滿足所求圓的方程。這樣就可以設(shè)出圓的標(biāo)準(zhǔn)方程。
學(xué)生閱讀教材例2解法。
師:提示:方程組中
(1)(2)得到什么?
(1)(3)得到什么?
然后,怎樣就可以求出圓心坐標(biāo)和半徑。
活動11【講授】解題收獲
先設(shè)出圓的標(biāo)準(zhǔn)方程,再根據(jù)已知條件建立方程組,從而求出圓心坐標(biāo)和半徑的方法——待定系數(shù)法。
活動12【活動】動手折一折
請同學(xué)們準(zhǔn)備一個銳角三角形紙片,能否用手工的方法找到此三角形外接圓的圓心?
學(xué)生回答過程.
把三角形的任意兩個頂點重合進行對折,就可以得到邊的垂直平分線,垂直平分線的交點即是三角形的外心。
師:把圓的弦對折,折線一定經(jīng)過圓心。即圓心一定在弦的垂直平分線上。
活動13【活動】Let’stry
例3已知圓心為C的圓經(jīng)過點A(1,1)和B(2,-2),且圓心C在直線m:x-y+1=0上,求圓心為C的圓的標(biāo)準(zhǔn)方程。
由學(xué)生閱讀例3,學(xué)生總結(jié)解題步驟。
活動14【講授】解題收獲
由圓的幾何性質(zhì)直接求出圓心坐標(biāo)和半徑,然后寫出標(biāo)準(zhǔn)方程——幾何性質(zhì)法。
活動15【活動】小結(jié)
一個方程
三種方法
一種思想
活動16【講授】作業(yè)布置
作業(yè):教材P124習(xí)題A組第2題和第3題.
課下探究:
(1)平面內(nèi)到一定點的距離等于定長的點軌跡是圓。點的軌跡是圓的方法很多,請試著找出來,并和其他同學(xué)交流。
(2)直線方程有五種形式,圓除了標(biāo)準(zhǔn)方程,還有其它形式嗎?
活動17【導(dǎo)入】結(jié)束語
圓心半徑確定圓,
待定系數(shù)很普遍;
大家站在同一圓,
彰和諧平等友善;
半徑就像無形線,
把大家心聚一點;
垂直平分折中線,
就能折出同心愿;
中國騰飛之夢圓。
活動18【測試】課堂測試
1.圓C:(x2)2+(y+1)2=3的圓心坐標(biāo)為()
A(2,1)B(2,—1)C(—2,1)D(—2,—1)
2.以原點為圓心,2為半徑的圓的標(biāo)準(zhǔn)方程是()
Ax2+y2=2Bx2+y2=4
C(x2)2+(y2)2=8Dx2+y2=√2
3圓心為(1,1)且與直線x+y=4相切的圓的方程是()
A(x1)2+(y1)2=2B(x1)2+(y1)2=4
C(x+1)2+(y+1)2=2D(x+1)2+(y+1)2=4
4圓A:(ax+2)2+y2=a+3,則此圓的半徑為______________。
5已知一個圓的圓心在點C(—3,—4),且經(jīng)過原點。
(1)求該圓的標(biāo)準(zhǔn)方程;
(2)判斷點M(—1,0),N(1,—1),P(3,—4)和圓的位置關(guān)系。
6.已知△AOB的頂點坐標(biāo)分別是A(8,0),B(0,6),O(0,0),求△AOB外接圓的方程.
7求過點A(1,—1)B(—1,1)且圓心在直線x+y2=0上的圓方程
參考答案:1B2B3A42或√2
5(1)(x+3)2+(y+4)2=25
(2)M在圓內(nèi),N在圓上,P在圓外。
6(x4)2+(y3)2=25。
7(x1)2+(y1)2=4
(一)教學(xué)具準(zhǔn)備
直尺,投影儀.
(二)教學(xué)目標(biāo)
1、掌握,的定義域、值域、最值、單調(diào)區(qū)間.
2、會求含有、的三角式的定義域.
(三)教學(xué)過程
1、設(shè)置情境
研究函數(shù)就是要討論一些性質(zhì),是函數(shù),我們當(dāng)然也要探討它的一些屬性.本節(jié)課,我們就來研究正弦函數(shù)、余弦函數(shù)的最基本的兩條性質(zhì).
2、探索研究
師:同學(xué)們回想一下,研究一個函數(shù)常要研究它的哪些性質(zhì)?
生:定義域、值域,單調(diào)性、奇偶性、等等.
師:很好,今天我們就來探索,兩條最基本的性質(zhì)定義域、值域.(板書課題正、余弦函數(shù)的定義域、值域.)
師:請同學(xué)看投影,大家仔細觀察一下正弦、余弦曲線的圖像.
師:請同學(xué)思考以下幾個問題:
(1)正弦、余弦函數(shù)的定義域是什么?
(2)正弦、余弦函數(shù)的值域是什么?
(3)他們最值情況如何?
(4)他們的正負值區(qū)間如何分?
(5)的解集如何?
師生一起歸納得出:
(1)正弦函數(shù)、余弦函數(shù)的定義域都是.
(2)正弦函數(shù)、余弦函數(shù)的值域都是即,稱為正弦函數(shù)、余弦函數(shù)的有界性.
(3)取最大值、最小值情況:
正弦函數(shù),當(dāng)時,()函數(shù)值取最大值1,當(dāng)時,()函數(shù)值取最小值-1.
余弦函數(shù),當(dāng),()時,函數(shù)值取最大值1,當(dāng),()時,函數(shù)值取最小值-1.
(4)正負值區(qū)間:
()
(5)零點:()
()
3、例題分析
【例1】求下列函數(shù)的定義域、值域:
(1);(2);(3).
解:(1),
(2)由()
又∵,∴
∴定義域為(),值域為.
(3)由(),又由
∴
∴定義域為(),值域為.
指出:求值域應(yīng)注意用到或有界性的&39;條件.
【例2】求下列函數(shù)的最大值,并求出最大值時的集合:
(1),;(2),;
(3)(4).
解:(1)當(dāng),即()時,取得最大值
∴函數(shù)的最大值為2,取最大值時的集合為.
(2)當(dāng)時,即()時,取得最大值.
∴函數(shù)的最大值為1,取最大值時的集合為.
(3)若,此時函數(shù)為常數(shù)函數(shù).
若時,∴時,即()時,函數(shù)取最大值,
∴時函數(shù)的最大值為,取最大值時的集合為.
(4)若,則當(dāng)時,函數(shù)取得最大值.
若,則,此時函數(shù)為常數(shù)函數(shù).
若,當(dāng)時,函數(shù)取得最大值.
∴當(dāng)時,函數(shù)取得最大值,取得最大值時的集合為;當(dāng)時,函數(shù)取得最大值,取得最大值時的集合為,當(dāng)時,函數(shù)無最大值.
指出:對于含參數(shù)的最大值或最小值問題,要對或的系數(shù)進行討論.
思考:此例若改為求最小值,結(jié)果如何?
【例3】要使下列各式有意義應(yīng)滿足什么條件?
(1);(2).
解:(1)由,
∴當(dāng)時,式子有意義.
(2)由,即
∴當(dāng)時,式子有意義.
4.演練反饋(投影)
(1)函數(shù),的簡圖是()
(2)函數(shù)的最大值和最小值分別為()
A.2,-2B.4,0C.2,0D.4,-4
(3)函數(shù)的最小值是()
A.B.-2C.D.
(4)如果與同時有意義,則的取值范圍應(yīng)為()
A.B.C.D.或
(5)與都是增函數(shù)的區(qū)間是()
A.,B.,
C.,D.,
(6)函數(shù)的定義域________,值域________,時的集合為_________.
參考答案:1.B2.B3.A4.C5.D
6.;;
5.總結(jié)提煉
(1),的定義域均為.
(2)、的值域都是
(3)有界性:
(4)最大值或最小值都存在,且取得極值的集合為無限集.
(5)正負敬意及零點,從圖上一目了然.
(6)單調(diào)區(qū)間也可以從圖上看出.
(四)板書設(shè)計
1.定義域
2.值域
3.最值
4.正負區(qū)間
5.零點
例1
例2
例3
課堂練習(xí)
課后思考題:求函數(shù)的最大值和最小值及取最值時的集合
提示: