小學(xué)六年級下冊數(shù)學(xué)知識點匯總

| 澤慧0

小學(xué)六年級數(shù)學(xué)下冊常考知識點一、負(fù)數(shù)1、在熟悉的生活情境中初步認(rèn)識負(fù)數(shù),能正確的讀、寫正數(shù)和負(fù)數(shù)。以下是小編為大家收集的關(guān)于小學(xué)六年級下冊數(shù)學(xué)知識點的相關(guān)內(nèi)容,供大家參考!

小學(xué)六年級下冊數(shù)學(xué)知識點匯總

小學(xué)六年級下冊數(shù)學(xué)知識點匯總【篇1】

一、認(rèn)識圓

1、圓的定義:圓是由曲線圍成的一種平面圖形。

2、圓心:將一張圓形紙片對折兩次,折痕相交于圓中心的一點,這一點叫做圓心。

一般用字母O表示。它到圓上任意一點的距離都相等.

3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。

把圓規(guī)兩腳分開,兩腳之間的距離就是圓的半徑。

4、直徑:通過圓心并且兩端都在圓上的線段叫做直徑。一般用字母d表示。

直徑是一個圓內(nèi)最長的線段。

5、圓心確定圓的位置,半徑確定圓的大小。

6、在同圓或等圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。所有的半徑都相等,所有的直徑都相等。

7、在同圓或等圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的。

用字母表示為:d=2r或r=

8、軸對稱圖形:

如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形是軸對稱圖形。

折痕所在的這條直線叫做對稱軸。(經(jīng)過圓心的任意一條直線或直徑所在的直線)

9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。

10、只有1一條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。

只有2條對稱軸的圖形是:長方形

只有3條對稱軸的圖形是:等邊三角形

只有4條對稱軸的圖形是:正方形;

有無數(shù)條對稱軸的圖形是:圓、圓環(huán)。

二、圓的周長

1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。

2、圓周率實驗:

在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,求出圓的周長。

發(fā)現(xiàn)一般規(guī)律,就是圓周長與它直徑的比值是一個固定數(shù)(π)。

3、圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數(shù),我們把它叫做圓周率。

用字母π(pai)表示。

(1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數(shù)。

圓周率π是一個無限不循環(huán)小數(shù)。在計算時,一般取π≈3.14。

(2)、在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。

(3)、世界上第一個把圓周率算出來的人是我國的數(shù)學(xué)家祖沖之。

4、圓的周長公式:C=πdd=C÷π

或C=2πrr=C÷2π

5、在一個正方形里畫一個的圓,圓的直徑等于正方形的邊長。

在一個長方形里畫一個的圓,圓的直徑等于長方形的寬。

6、區(qū)分周長的一半和半圓的周長:

(1)周長的一半:等于圓的周長÷2計算方法:2πr÷2即πr

(2)半圓的周長:等于圓的周長的一半加直徑。計算方法:πr+2r

三、數(shù)與代數(shù)

一、分?jǐn)?shù)乘法

(一)分?jǐn)?shù)乘法的計算法則:

1、分?jǐn)?shù)與整數(shù)相乘:分子與整數(shù)相乘的積做分子,分母不變。(整數(shù)和分母約分)

2、分?jǐn)?shù)與分?jǐn)?shù)相乘:用分子相乘的積做分子,分母相乘的積做分母。

3、為了計算簡便,能約分的要先約分,再計算。

注意:當(dāng)帶分?jǐn)?shù)進(jìn)行乘法計算時,要先把帶分?jǐn)?shù)化成假分?jǐn)?shù)再進(jìn)行計算。

(二)規(guī)律:(乘法中比較大小時)

一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。

一個數(shù)(0除外)乘小于1的數(shù)(0除外),積小于這個數(shù)。

一個數(shù)(0除外)乘1,積等于這個數(shù)。

(三)分?jǐn)?shù)混合運算的運算順序和整數(shù)的運算順序相同。

(四)整數(shù)乘法的交換律、結(jié)合律和分配律,對于分?jǐn)?shù)乘法也同樣適用。

乘法交換律:a×b=b×a

乘法結(jié)合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c

二、分?jǐn)?shù)乘法的解決問題(詳細(xì)見重難點分解)

(已知單位“1”的量(用乘法),求單位“1”的幾分之幾是多少)

1、找單位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面

2、求一個數(shù)的幾倍:一個數(shù)×幾倍;求一個數(shù)的幾分之幾是多少:一個數(shù)× 。

3、寫數(shù)量關(guān)系式技巧:

(1)“的”相當(dāng)于“×”(乘號)

“占”、“是”、“比”“相當(dāng)于”相當(dāng)于“=”(等號)

(2)分率前是“的”:

單位“1”的量×分率=分率對應(yīng)量

(3)分率前是“多或少”的意思:

單位“1”的量×(1±分率)=分率的對應(yīng)量

小學(xué)六年級下冊數(shù)學(xué)知識點匯總【篇2】

一、負(fù)數(shù):

1、在熟悉的生活情境中初步認(rèn)識負(fù)數(shù),能正確的讀、寫正數(shù)和負(fù)數(shù),知道0既不是正數(shù)也不是負(fù)數(shù)。

2、初步學(xué)會用負(fù)數(shù)表示一些日常生活中的實際問題,體驗數(shù)學(xué)與生活的密切聯(lián)系。

3、能借助數(shù)軸初步學(xué)會比較正數(shù)、0和負(fù)數(shù)之間的大小。

二、圓柱和圓錐

1、認(rèn)識圓柱和圓錐,掌握它們的基本特征。認(rèn)識圓柱的底面、側(cè)面和高。認(rèn)識圓錐的底面和高。

2、探索并掌握圓柱的側(cè)面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關(guān)的簡單實際問題。

3、通過觀察、設(shè)計和制作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯(lián)系,發(fā)展學(xué)生的空間觀念。

三、比例

1、理解比例的意義和基本性質(zhì),會解比例。

2、理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。

3、認(rèn)識正比例關(guān)系的圖像,能根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標(biāo)系的方格紙上畫出圖像,會根據(jù)其中一個量在圖像中找出或估計出另一個量的值。

4、了解比例尺,會求平面圖的比例尺以及根據(jù)比例尺求圖上距離或?qū)嶋H距離。

5、認(rèn)識放大與縮小現(xiàn)象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。

6、滲透函數(shù)思想,使學(xué)生受到辯證唯物主義觀點的啟蒙教育

四、統(tǒng)計

1、會綜合應(yīng)用學(xué)過的統(tǒng)計知識,能從統(tǒng)計圖中準(zhǔn)確提取統(tǒng)計信息,能夠正確解釋統(tǒng)計結(jié)果。

2、能根據(jù)統(tǒng)計圖提供的信息,做出正確的判斷或簡單預(yù)測。

五、數(shù)學(xué)廣角

1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。 2、通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

六、整理和復(fù)習(xí)

1、比較系統(tǒng)地掌握有關(guān)整數(shù)、小數(shù)、分?jǐn)?shù)和百分?jǐn)?shù)、負(fù)數(shù)、比和比例、方程的基礎(chǔ)知識。能比較熟練地進(jìn)行整數(shù)、小數(shù)、分?jǐn)?shù)的四則運算,能進(jìn)行整數(shù)、小數(shù)加、減、乘、除的估算,會使用學(xué)過的簡便算法,合理、靈活地進(jìn)行計算;會解學(xué)過的方程;養(yǎng)成檢查和驗算的習(xí)慣。

2、鞏固常用計量單位的表象,掌握所學(xué)單位間的進(jìn)率,能夠進(jìn)行簡單的改寫。

3、掌握所學(xué)幾何形體的特征;能夠比較熟練地計算一些幾何形體的周長、面積和體積,并能應(yīng)用;鞏固所學(xué)的簡單的畫圖、測量等技能;鞏固軸對稱圖形的認(rèn)識,會畫一個圖形的對稱軸,鞏固圖形的平移、旋轉(zhuǎn)的認(rèn)識;能用數(shù)對或根據(jù)方向和距離確定物體的位置,掌握有關(guān)比例尺的知識,并能應(yīng)用。

4、掌握所學(xué)的統(tǒng)計初步知識,能夠看和繪制簡單的統(tǒng)計圖表,能夠根據(jù)數(shù)據(jù)做出簡單的判斷與預(yù)測,會求一些簡單事件的可能性,能夠解決一些計算平均數(shù)的實際問題。

5、進(jìn)一步感受數(shù)學(xué)知識間的相互聯(lián)系,體會數(shù)學(xué)的作用;掌握所學(xué)的常見數(shù)量關(guān)系和解決問題的思考方法,能夠比較靈活地運用所學(xué)知識解決生活中一些簡單的實際問題。

(一)數(shù)的讀法和寫法

1、整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數(shù)位連續(xù)有幾個0都只讀一個零。

2、整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在那個數(shù)位上寫0。

3、小數(shù)的讀法:讀小數(shù)的時候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點讀作“點”,小數(shù)部分從左向右順次讀出每一位數(shù)位上的數(shù)字。

4、小數(shù)的寫法:寫小數(shù)的時候,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點寫在個位右下角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。

5、分?jǐn)?shù)的讀法:讀分?jǐn)?shù)時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數(shù)的讀法來讀。

6、分?jǐn)?shù)的寫法:先寫分?jǐn)?shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。

7、百分?jǐn)?shù)的讀法:讀百分?jǐn)?shù)時,先讀百分之,再讀百分號前面的數(shù),讀數(shù)時按照整數(shù)的讀法來讀。

8、百分?jǐn)?shù)的寫法:百分?jǐn)?shù)通常不寫成分?jǐn)?shù)形式,而在原來的分子后面加上百分號“%”來表示。

(二)數(shù)的改寫

一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。

1、準(zhǔn)確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準(zhǔn)確數(shù)。例如把1254300000改寫成以萬做單位的數(shù)是125430萬;改寫成以億做單位的數(shù)12。543億。

2、近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾數(shù),用一個近似數(shù)來表示。例如:1302490015省略億后面的尾數(shù)是13億。

3、四舍五入法:要省略的尾數(shù)的最高位上的數(shù)是4或者比4小,就把尾數(shù)去掉;如果尾數(shù)的最高位上的數(shù)是5或者比5大,就把尾數(shù)舍去,并向它的前一位進(jìn)1。例如:省略345900萬后面的尾數(shù)約是35萬。省略4725097420億后面的尾數(shù)約是47億。

4、大小比較

(1)比較整數(shù)大?。罕容^整數(shù)的大小,位數(shù)多的那個數(shù)就大,如果位數(shù)相同,就看最高位,最高位上的數(shù)大,那個數(shù)就大;最高位上的數(shù)相同,就看下一位,哪一位上的數(shù)大那個數(shù)就大。

(2)比較小數(shù)的大?。合瓤此鼈兊恼麛?shù)部分,,整數(shù)部分大的那個數(shù)就大;整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大……

(3)比較分?jǐn)?shù)的大?。悍帜赶嗤姆?jǐn)?shù),分子大的分?jǐn)?shù)比較大;分子相同的數(shù),分母小的分?jǐn)?shù)大。分?jǐn)?shù)的分母和分子都不相同的,先通分,再比較兩個數(shù)的大小。

(三)數(shù)的互化

1、小數(shù)化成分?jǐn)?shù):原來有幾位小數(shù),就在1的后面寫幾個零作分母,把原來的小數(shù)去掉小數(shù)點作分子,能約分的要約分。

2、分?jǐn)?shù)化成小數(shù):用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,一般保留三位小數(shù)。

3、一個最簡分?jǐn)?shù),如果分母中除了2和5以外,不含有其他的質(zhì)因數(shù),這個分?jǐn)?shù)就能化成有限小數(shù);如果分母中含有2和5以外的質(zhì)因數(shù),這個分?jǐn)?shù)就不能化成有限小數(shù)。

4、小數(shù)化成百分?jǐn)?shù):只要把小數(shù)點向右移動兩位,同時在后面添上百分號。

5、百分?jǐn)?shù)化成小數(shù):把百分?jǐn)?shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。

6、分?jǐn)?shù)化成百分?jǐn)?shù):通常先把分?jǐn)?shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分?jǐn)?shù)。

7、百分?jǐn)?shù)化成小數(shù):先把百分?jǐn)?shù)改寫成分?jǐn)?shù),能約分的要約成最簡分?jǐn)?shù)。

(四)數(shù)的整除

1、把一個合數(shù)分解質(zhì)因數(shù),通常用短除法。先用能整除這個合數(shù)的質(zhì)數(shù)去除,一直除到商是質(zhì)數(shù)為止,再把除數(shù)和商寫成連乘的形式。

2、求幾個數(shù)的最大公約數(shù)的方法是:先用這幾個數(shù)的公約數(shù)連續(xù)去除,一直除到所得的商只有公約數(shù)1為止,然后把所有的除數(shù)連乘求積,這個積就是這幾個數(shù)的的最大公約數(shù)。

3、求幾個數(shù)的最小公倍數(shù)的方法是:先用這幾個數(shù)(或其中的部分?jǐn)?shù))的公約數(shù)去除,一直除到互質(zhì)(或兩兩互質(zhì))為止,然后把所有的除數(shù)和商連乘求積,這個積就是這幾個數(shù)的最小公倍數(shù)。

4、成為互質(zhì)關(guān)系的兩個數(shù):1和任何自然數(shù)互質(zhì);相鄰的兩個自然數(shù)互質(zhì);當(dāng)合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì);兩個合數(shù)的公約數(shù)只有1時,這兩個合數(shù)互質(zhì)。

(五)約分和通分

約分的方法:用分子和分母的公約數(shù)(1除外)去除分子、分母;通常要除到得出最簡分?jǐn)?shù)為止。

通分的方法:先求出原來的幾個分?jǐn)?shù)分母的最小公倍數(shù),然后把各分?jǐn)?shù)化成用這個最小公倍數(shù)作分母的分?jǐn)?shù)。

小數(shù)

1、小數(shù)的意義

把整數(shù)1平均分成10份、100份、1000份……得到的十分之幾、百分之幾、千分之幾……可以用小數(shù)表示。

一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾……

一個小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點部分組成。數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點右邊的數(shù)叫做小數(shù)部分。

在小數(shù)里,每相鄰兩個計數(shù)單位之間的進(jìn)率都是10。小數(shù)部分的最高分?jǐn)?shù)單位“十分之一”和整數(shù)部分的最低單位“一”之間的進(jìn)率也是10。

2、小數(shù)的分類

純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如:0。25 、 0。368都是純小數(shù)。帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。例如:3。25 、5。26都是帶小數(shù)。

有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。例如:41。7 、 25。3 、 0。23都是有限小數(shù)。

無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。例如:4。33 …… 3。1415926 ……

無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。例如:∏

循環(huán)小數(shù):一個數(shù)的小數(shù)部分,有一個數(shù)字或者幾個數(shù)字依次不斷重復(fù)出現(xiàn),這個數(shù)叫做循環(huán)小數(shù)。例如:3。555 …… 0。0333 …… 12。109109 ……

一個循環(huán)小數(shù)的小數(shù)部分,依次不斷重復(fù)出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。例如:3。99 ……的循環(huán)節(jié)是“ 9 ”,0。5454 ……的循環(huán)節(jié)是“ 54” 。純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)部分第一位開始的,叫做純循環(huán)小數(shù)。例如:3。111 …… 0。5656 ……

混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)部分第一位開始的,叫做混循環(huán)小數(shù)。 3。1222 …… 0。03333 ……

寫循環(huán)小數(shù)的時候,為了簡便,小數(shù)的循環(huán)部分只需寫出一個循環(huán)節(jié),并在這個循環(huán)節(jié)的首、末位數(shù)字上各點一個圓點。如果循環(huán)節(jié)只有一個數(shù)字,就只在它的上面點一個點。例如:3。777 ……簡寫作 0。5302302 ……簡寫作 。

分?jǐn)?shù)

1、分?jǐn)?shù)的意義

把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)叫做分?jǐn)?shù)。

在分?jǐn)?shù)里,中間的橫線叫做分?jǐn)?shù)線;分?jǐn)?shù)線下面的數(shù),叫做分母,表示把單位“1”平均分成多少份;分?jǐn)?shù)線下面的數(shù)叫做分子,表示有這樣的多少份。

把單位“1”平均分成若干份,表示其中的一份的數(shù),叫做分?jǐn)?shù)單位。

2、分?jǐn)?shù)的分類

真分?jǐn)?shù):分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù)。真分?jǐn)?shù)小于1。

假分?jǐn)?shù):分子比分母大或者分子和分母相等的分?jǐn)?shù),叫做假分?jǐn)?shù)。假分?jǐn)?shù)大于或等于1。帶分?jǐn)?shù):假分?jǐn)?shù)可以寫成整數(shù)與真分?jǐn)?shù)合成的數(shù),通常叫做帶分?jǐn)?shù)。 3約分和通分

把一個分?jǐn)?shù)化成同它相等但是分子、分母都比較小的分?jǐn)?shù),叫做約分。分子分母是互質(zhì)數(shù)的分?jǐn)?shù),叫做最簡分?jǐn)?shù)。

把異分母分?jǐn)?shù)分別化成和原來分?jǐn)?shù)相等的同分母分?jǐn)?shù),叫做通分。

(四)百分?jǐn)?shù)

1、表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫做百分?jǐn)?shù),也叫做百分率或百分比。百分?jǐn)?shù)通常用"%"來表示。百分號是表示百分?jǐn)?shù)的符號。

比例表示兩個相等的式子叫做比例。在比例里,兩個外項的積等于兩個內(nèi)項。這叫做《比例的基本性質(zhì)》

根據(jù)比例的基本性質(zhì),如果已知比例中的任何三項,就可以求出這個比例中的另一個未知項。求比例中的未知項,叫做解比例

如:x:320=1:10 10x =320×1 x =320÷10 x =32

小學(xué)六年級下冊數(shù)學(xué)知識點匯總【篇3】

一、圓柱

1、圓柱的形成:圓柱是以長方形的一邊為軸旋轉(zhuǎn)而得的。

圓柱也可以由長方形卷曲而得到。

兩種方式:

1.以長方形的長為底面周長,寬為高;

2.以長方形的寬為底面周長,長為高。

其中,第一種方式得到的圓柱體體積較大。

2、圓柱的高是兩個底面之間的距離,一個圓柱有無數(shù)條高,他們的數(shù)值是相等的

3、圓柱的特征:

(1)底面的特征:圓柱的底面是完全相等的兩個圓。

(2)側(cè)面的特征:圓柱的側(cè)面是一個曲面。

(3)高的特征:圓柱有無數(shù)條高

4、圓柱的切割:

①橫切:切面是圓,表面積增加2倍底面積,即S增=2πr?

②豎切(過直徑):切面是長方形(如果h=2R,切面為正方形),該長方形的長是圓柱的高,寬是圓柱的底面直徑,表面積增加兩個長方形的面積,即S增=4rh

5、圓柱的側(cè)面展開圖:

①沿著高展開,展開圖形是長方形,如果h=2πr,則展開圖形為正方形

②不沿著高展開,展開圖形是平行四邊形或不規(guī)則圖形

③無論怎么展開都得不到梯形

6、圓柱的相關(guān)計算公式:

底面積:S底=πr?

底面周長:C底=πd=2πr

側(cè)面積:S側(cè)=2πrh

表面積:S表=2S底+S側(cè)=2πr?+2πrh

體積:V柱=πr?h

考試常見題型:

①已知圓柱的底面積和高,求圓柱的側(cè)面積,表面積,體積,底面周長

②已知圓柱的底面周長和高,求圓柱的側(cè)面積,表面積,體積,底面積

③已知圓柱的底面周長和體積,求圓柱的側(cè)面積,表面積,高,底面積

④已知圓柱的底面面積和高,求圓柱的側(cè)面積,表面積,體積

⑤已知圓柱的側(cè)面積和高,求圓柱的底面半徑,表面積,體積,底面積

以上幾種常見題型的解題方法,通常是求出圓柱的底面半徑和高,再根據(jù)圓柱的相關(guān)計算公式進(jìn)行計算

無蓋水桶的表面積=側(cè)面積+一個底面積油桶的表面積=側(cè)面積+兩個底面積

煙囪通風(fēng)管的表面積=側(cè)面積

只求側(cè)面積:燈罩、排水管、漆柱、通風(fēng)管、壓路機、衛(wèi)生紙中軸、薯片盒包裝

側(cè)面積+一個底面積:玻璃杯、水桶、筆筒、帽子、游泳池

側(cè)面積+兩個底面積:油桶、米桶、罐桶類

二、圓錐

1、圓錐的形成:圓錐是以直角三角形的一直角邊為軸旋轉(zhuǎn)而得到的。圓錐也可以由扇形卷曲而得到。

2、圓錐的高是兩個頂點與底面之間的距離,與圓柱不同,圓錐只有一條高。

3、圓錐的特征:

(1)底面的特征:圓錐的底面一個圓。

(2)側(cè)面的特征:圓錐的側(cè)面是一個曲面。

(3)高的特征:圓錐有一條高。

4、圓錐的切割:

①橫切:切面是圓

②豎切(過頂點和直徑直徑):切面是等腰三角形,該等腰三角形的高是圓錐的高,底是圓錐的底面直徑,面積增加兩個等腰三角形的面積,

即S增=2rh

5、圓錐的相關(guān)計算公式:

底面積:S底=πr?

底面周長:C底=πd=2πr

體積:V錐=1/3πr?h

考試常見題型:

①已知圓錐的底面積和高,求體積,底面周長

②已知圓錐的底面周長和高,求圓錐的體積,底面積

③已知圓錐的底面周長和體積,求圓錐的高,底面積

以上幾種常見題型的解題方法,通常是求出圓錐的底面半徑和高,再根據(jù)圓柱的相關(guān)計算公式進(jìn)行計算

三、圓柱和圓錐的關(guān)系

1、圓柱與圓錐等底等高,圓柱的體積是圓錐的3倍。

2、圓柱與圓錐等底等體積,圓錐的高是圓柱的3倍。

3、圓柱與圓錐等高等體積,圓錐的底面積(注意:是底面積而不是底面半徑)是圓柱的3倍。

4、圓柱與圓錐等底等高,體積相差2/3Sh

題型總結(jié)

①直接利用公式:分析清楚求的的是表面積,側(cè)面積、底面積、體積

分析清楚半徑變化導(dǎo)致底面周長、側(cè)面積、底面積、體積的變化

分析清楚兩個圓柱(或兩個圓錐)半徑、底面積、底面周長、側(cè)面積、表面積、體積之比

②圓柱與圓錐關(guān)系的轉(zhuǎn)換:包括削成最大體積的問題(正方體,長方體與圓柱圓錐之間)

③橫截面的問題

④浸水體積問題:(水面上升部分的體積就是浸入水中物品的體積,等于盛水容積的底面積乘以上升的高度)容積是圓柱或長方體,正方體

⑤等體積轉(zhuǎn)換問題:一個圓柱融化后做成圓錐,或圓柱中的溶液倒入圓錐,都是體積不變的問題,注意不要乘以1/3

小學(xué)六年級下冊數(shù)學(xué)知識點匯總【篇4】

第二單元百分?jǐn)?shù)二

(一)、折扣和成數(shù)

1、折扣:用于商品,現(xiàn)價是原價的百分之幾,叫做折扣。

通稱“打折”。

幾折就是十分之幾,也就是百分之幾十。例如:八折=8/10=80%,

六折五=6。5/10=65/100=65%

解決打折的問題,關(guān)鍵是先將打的折數(shù)轉(zhuǎn)化為百分?jǐn)?shù)或分?jǐn)?shù),然后按照求比一個數(shù)多(少)百分之幾(幾分之幾)的數(shù)的解題方法進(jìn)行解答。

商品現(xiàn)在打八折:現(xiàn)在的售價是原價的80%

商品現(xiàn)在打六折五:現(xiàn)在的售價是原價的65%

2、成數(shù):

幾成就是十分之幾,也就是百分之幾十。例如:一成=1/10=10%

八成五=8。5/10=85/100=80%

解決成數(shù)的問題,關(guān)鍵是先將成數(shù)轉(zhuǎn)化為百分?jǐn)?shù)或分?jǐn)?shù),然后按照求比一個數(shù)多(少)百分之幾(幾分之幾)的數(shù)的解題方法進(jìn)行解答。

這次衣服的進(jìn)價增加一成:這次衣服的進(jìn)價比原來的進(jìn)價增加10%

今年小麥的收成是去年的八成五:今年小麥的收成是去年的85%

(二)、稅率和利率

1、稅率

(1)納稅:納稅是根據(jù)國家稅法的有關(guān)規(guī)定,按照一定的比率把集體或個人收入的一部分繳納給國家。

(2)納稅的意義:稅收是國家財政收入的主要來源之一。國家用收來的稅款發(fā)展經(jīng)濟(jì)、科技、教育、文化和國防安全等事業(yè)。

(3)應(yīng)納稅額:繳納的稅款叫做應(yīng)納稅額。

(4)稅率:應(yīng)納稅額與各種收入的比率叫做稅率。

(5)應(yīng)納稅額的計算方法:

應(yīng)納稅額=總收入×稅率

收入額=應(yīng)納稅額÷稅率

2、利率

(1)存款分為活期、整存整取和零存整取等方法。

(2)儲蓄的意義:人們常常把暫時不用的錢存入銀行或信用社,儲蓄起來,這樣不僅可以支援國家建設(shè),也使得個人用錢更加安全和有計劃,還可以增加一些收入。

(3)本金:存入銀行的錢叫做本金。

(4)利息:取款時銀行多支付的錢叫做利息。

(5)利率:利息與本金的比值叫做利率。

(6)利息的計算公式:

利息=本金×利率×?xí)r間

利率=利息÷時間÷本金×100%

(7)注意:如要上利息稅(國債和教育儲藏的利息不納稅),則:

稅后利息=利息—利息的應(yīng)納稅額=利息—利息×利息稅率=利息×(1—利息稅率)

稅后利息=本金×利率×?xí)r間×(1—利息稅率)

購物策略:

估計費用:根據(jù)實際的問題,選擇合理的估算策略,進(jìn)行估算。

購物策略:根據(jù)實際需要,對常見的幾種優(yōu)惠策略加以分析和比較,并能夠最終選擇最為優(yōu)惠的方案

學(xué)后反思:做事情運用策略的好處

小學(xué)六年級下冊數(shù)學(xué)知識點匯總【篇5】

1、小數(shù)乘法,小數(shù)除法,簡易方程,觀察物體,多邊形的面積,統(tǒng)計與可能性,數(shù)學(xué)廣角和數(shù)學(xué)綜合運用等。

在前面學(xué)習(xí)整數(shù)四則運算和小數(shù)加、減法的基礎(chǔ)上,繼續(xù)培養(yǎng)學(xué)生小數(shù)的四則運算能力。

2、用字母表示數(shù)、等式的性質(zhì)、解簡單的方程、用方程表示等量關(guān)系進(jìn)而解決簡單的實際問題等內(nèi)容,進(jìn)一步發(fā)展學(xué)生的抽象思維能力,提高解決問題的能力。

3、在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和經(jīng)驗的基礎(chǔ)上,通過豐富的現(xiàn)實的數(shù)學(xué)活動,讓學(xué)生獲得探究學(xué)習(xí)的經(jīng)歷,能辨認(rèn)從不同方位看到的物體的形狀和相對位置;

4、探索并體會各種圖形的特征、圖形之間的關(guān)系,及圖形之間的轉(zhuǎn)化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關(guān)系,滲透平移、旋轉(zhuǎn)、轉(zhuǎn)化的數(shù)學(xué)思想方法,促進(jìn)學(xué)生空間觀念的進(jìn)一步發(fā)展。

5、在統(tǒng)計與概率方面,本冊教材讓學(xué)生學(xué)習(xí)有關(guān)可能性和中位數(shù)的知識。通過操作與實驗,讓學(xué)生體驗事件發(fā)生的等可能性以及游戲規(guī)則的公平性,學(xué)會求一些事件發(fā)生的可能性;

6、在平均數(shù)的基礎(chǔ)上教學(xué)中位數(shù),使學(xué)生理解平均數(shù)和中位數(shù)各自的統(tǒng)計意義、各自的特征和適用范圍;進(jìn)一步體會統(tǒng)計和概率在現(xiàn)實生活中的作用。

7、在用數(shù)學(xué)解決問題方面,教材一方面結(jié)合小數(shù)乘法和除法兩個單元,教學(xué)用所學(xué)的乘除法計算知識解決生活中的簡單問題;另一方面,安排了“數(shù)學(xué)廣角”的教學(xué)內(nèi)容。

8、通過觀察、猜測、實驗、推理等活動向?qū)W生滲透初步的數(shù)字編碼的數(shù)學(xué)思想方法,體會運用數(shù)字的有規(guī)律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數(shù)學(xué)的魅力。

9、培養(yǎng)學(xué)生的符號感,及觀察、分析、推理的能力,培養(yǎng)他們探索數(shù)學(xué)問題的興趣和發(fā)現(xiàn)、欣賞數(shù)學(xué)美的意識。

M在數(shù)學(xué)里代表什么

1)代表長度單位:米。這是英文meter(或metre)的簡寫;

2)代表時間單位:分鐘。這是英文minute的簡寫;

3)代表千分之一:毫。這是英文milli的簡寫,通常加在單位前面,數(shù)值為千分之一的當(dāng)前單位。比如mg:毫克;mm:毫米;ms:毫秒。

CuA是什么意思數(shù)學(xué)

CuA表示的是集合A在全集U里面的補集。例如集合U={1,2,3,4},A={1,2},CuA={3,4}。

496224