集合高中數(shù)學(xué)教案

| 新華0

寫教案時,需要注重教學(xué)策略和教學(xué)方法的設(shè)計,選擇合適的教學(xué)手段,以便提高教學(xué)效果。集合高中數(shù)學(xué)教案要怎么寫?接下來給大家?guī)砑细咧袛?shù)學(xué)教案,方便大家學(xué)習(xí)。

集合高中數(shù)學(xué)教案篇1

本節(jié)課是《等比數(shù)列的前n項和》的第一課時,學(xué)生在學(xué)習(xí)了等比數(shù)列的概念、等差與等比數(shù)列的通項公式及等差數(shù)列的前n項和公式前提下學(xué)習(xí)的,對于本節(jié)課所需的知識點和探究方法都有了一定的儲備。這節(jié)課我充分利用情境,激發(fā)學(xué)生興趣,順利導(dǎo)入本節(jié)課的內(nèi)容。

本節(jié)課我用心準(zhǔn)備、精心設(shè)計、潛心專研,是我上好這節(jié)課的前提。在教學(xué)過程中,我充分體現(xiàn)了教學(xué)目標(biāo),抓住了教學(xué)重點,解決了教學(xué)難點,更重要的是,全班學(xué)生心、神、情、與我深度融合。這節(jié)課的.內(nèi)容是“等差數(shù)列的前n項和”與“等比數(shù)列”內(nèi)容的延續(xù),為學(xué)生后面學(xué)綜合數(shù)列的求和做了鋪墊,重點是推導(dǎo)等比數(shù)列的前n項和的公式以及公式的簡單應(yīng)用,難點是用錯位相減法推導(dǎo)等比數(shù)列的前n項和公式以及公式應(yīng)用中對q與1的討論。本節(jié)課我注重從“知識傳授”的傳統(tǒng)模式轉(zhuǎn)變?yōu)椤耙詫W(xué)生為主體”的參與模式,注重數(shù)學(xué)思想方法的滲透和良好的思維品質(zhì)的養(yǎng)成,注重學(xué)生創(chuàng)造精神和實踐能力的培養(yǎng),這在一定的程度上,激活了學(xué)生的思維,但對教師的挑戰(zhàn)也是不言而喻的,不僅要透徹理解教材的意圖,還要有寬厚的知識積累和深厚的自學(xué)功底。

在等比數(shù)列求和的教學(xué)時,開始我給同學(xué)們說了一個故事,“在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計算,結(jié)果出來后,國王大吃一驚?!睘槭裁茨??同學(xué)們很好奇,于是有計算器的同學(xué)拿出了計算器,結(jié)果沒有計算完,計算器就算不出來了。激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性,于是引入主題,等比數(shù)列求和。

首先讓學(xué)生回憶等差數(shù)列的求和公式的推導(dǎo)方法,結(jié)合自己的預(yù)習(xí)談?wù)勛约簩φn本上等比數(shù)列求和公式推導(dǎo)過程的理解,其本質(zhì)是什么?這樣做的目的是什么?此時教師根據(jù)學(xué)生們的討論和展示,適時點撥,指出問題的關(guān)鍵。在用錯位相減法推出等比數(shù)列前n項和公式過程中,做差后提醒同學(xué)們,接下來要做什么工作,注意什么,學(xué)生們自然知道分母不能為零,因而知道了等比數(shù)列前n項和公式是分情況討論的,為什么會有公比為1和公比不為1兩種情況。此時再提醒學(xué)生等差數(shù)列求和公式是一個公式的兩種形式,而等比數(shù)列求和公式是兩種不同情況下的公式。然后是對求和公式的簡單應(yīng)用。所以讓學(xué)生經(jīng)歷等比數(shù)列前n項和公式的推導(dǎo)過程成了本節(jié)課的重點與難點,在改善學(xué)生的學(xué)習(xí)方式上,是讓學(xué)生提出問題并解決問題來進行自主學(xué)習(xí)、合作學(xué)習(xí)與探究學(xué)習(xí)。

在教學(xué)環(huán)節(jié)上我利用小組合作學(xué)習(xí)、學(xué)生自主學(xué)習(xí)、小組討論、學(xué)生展示、師生點評,教師總結(jié)升華,當(dāng)堂檢測等環(huán)節(jié),有效地實現(xiàn)本節(jié)課的教學(xué)目標(biāo)。在教學(xué)評價上我關(guān)注學(xué)生,不單純看學(xué)生是否會解題,關(guān)鍵是看學(xué)生是否動腦,看學(xué)生的思維過程來肯定和鼓勵,如在解決情景問題的過程中,學(xué)生躍躍欲試、情緒高漲、討論激烈,可能會探究出多種解決方案,適時地鼓勵與評價,使學(xué)生的進取心得到增強,是激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣的有效途徑。我通過對學(xué)生的評價,將知識點和思想方法又得到強化。

總之,這節(jié)課也有不足,容量大,知識豐富,滲透歸納與推理、錯位相減法、從特殊到一般、類比推理、分類討論等數(shù)學(xué)思想,對學(xué)生要求高。但通過課堂反應(yīng),教學(xué)效果好,這是我感到欣慰的地方。

集合高中數(shù)學(xué)教案篇2

一、教材分析

《余弦定理》選自人教A版高中數(shù)學(xué)必修五第一章第一節(jié)第一課時。本節(jié)課的主要教學(xué)內(nèi)容是余弦定理的內(nèi)容及證明,以及運用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。

余弦定理的學(xué)習(xí)有充分的基礎(chǔ),初中的勾股定理、必修一中的向量知識、上一課時的正弦定理都是本節(jié)課內(nèi)容學(xué)習(xí)的知識基礎(chǔ),同時又對本節(jié)課的學(xué)習(xí)提供了一定的方法指導(dǎo)。其次,余弦定理在高中解三角形問題中有著重要的地位,是解決各種解三角形問題的常用方法,余弦定理也經(jīng)常運用于空間幾何中,所以余弦定理是高中數(shù)學(xué)學(xué)習(xí)的一個十分重要的內(nèi)容。

二、教學(xué)目標(biāo)

知識與技能:

1、理解并掌握余弦定理和余弦定理的推論。

2、掌握余弦定理的推導(dǎo)、證明過程。

3、能運用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。過程與方法:

1、通過從實際問題中抽象出數(shù)學(xué)問題,培養(yǎng)學(xué)生知識的遷移能力。

2、通過直角三角形到一般三角形的過渡,培養(yǎng)學(xué)生歸納總結(jié)能力。

3、通過余弦定理推導(dǎo)證明的過程,培養(yǎng)學(xué)生運用所學(xué)知識解決實際問題的能力。

情感態(tài)度與價值觀:

1、在交流合作的過程中增強合作探究、團結(jié)協(xié)作精神,體驗解決問題的成功喜悅。

2、感受數(shù)學(xué)一般規(guī)律的美感,培養(yǎng)數(shù)學(xué)學(xué)習(xí)的興趣。

三、教學(xué)重難點

重點:余弦定理及其推論和余弦定理的運用。

難點:余弦定理的發(fā)現(xiàn)和推導(dǎo)過程以及多解情況的判斷。

四、教學(xué)用具

普通教學(xué)工具、多媒體工具(以上均為命題教學(xué)的準(zhǔn)備)

集合高中數(shù)學(xué)教案篇3

在前一段我講了30度、45度、60度特殊角的三角函數(shù)值,它是北師大版九年級數(shù)學(xué)下冊的一節(jié)課,在前一節(jié)剛講過正弦、余弦、正切三角函數(shù)的定義和求法?,F(xiàn)把我對本節(jié)課的做法和想法與大家交流一下,希望能得到同行和專家的指點,以期取得更大的進步。

一、說教學(xué)目標(biāo)

1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行有關(guān)的推理。進一步體會三角函數(shù)的意義;能夠進行30°、45°、60°角的三角函數(shù)值的計算;能夠根據(jù)30°、45°、60°的三角函數(shù)值說明相應(yīng)的銳角的大小。

2、發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)的能力;培養(yǎng)學(xué)生把實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。

3、積極參與數(shù)學(xué)活動,對數(shù)學(xué)產(chǎn)生好奇心。培養(yǎng)學(xué)生獨立思考問題的習(xí)慣。

二、說教學(xué)重點

教學(xué)重點:探索特殊銳角三角函數(shù)值的過程,進行這些三角函數(shù)值的計算并會比較不同銳角三角函數(shù)值大小

在引入時我采用創(chuàng)設(shè)情境法,“為了測量一棵大樹的高度,準(zhǔn)備了如下測量工具:(1)含30、60度角的直角三角尺(2)皮尺。請你設(shè)計一個方案,來測量一棵大樹的高度。這樣會增強學(xué)生的學(xué)習(xí)欲望,使學(xué)生對本節(jié)內(nèi)容更感興趣。

三、說教學(xué)設(shè)計:

1、讓學(xué)生自主研習(xí),獨立探究。

(1)觀察一副三角尺,其中有幾個銳角?他們分別等于多少度?

(2)sin30度等于多少呢?你是怎樣得到的?cos30度呢,tan30度呢?

2、讓學(xué)生合作學(xué)習(xí)、生生互動

(1)請同學(xué)們完成下表:30°、45°、60°角的三角函數(shù)值(表格略)

(2)觀察表格中函數(shù)值的特點。先看第一列30°、45°、60°角的正弦值,你能發(fā)現(xiàn)什么規(guī)律呢?第二列、第三列呢?

(3)同桌之間可互相檢查一下對30°、45°、60°角的三角函數(shù)值的記憶情況。

3、精講細評,師生合作(先由學(xué)生獨立完成)

(1)計算:sin30°+cos45°;sin260°+cos260°—tan45°。

(2)鐘表上的鐘擺長度為25Cm,當(dāng)鐘擺向兩邊擺動時,擺角恰好為60°,且兩邊的擺動角度相同,求它擺至最高位置時與其擺至最低位置時的高度之差。(結(jié)果精確到0。1Cm)

分析:引導(dǎo)學(xué)生自己根據(jù)題意畫出示意圖,培養(yǎng)學(xué)生把實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力

4、延伸遷移,形成技能

(1)計算:sin60°—tan45°;cos60°+tan60°;

(2)某商場有一自動扶梯,其傾斜角為30°。高為7m,扶梯的長度是多少?

自主小結(jié):

講課后我讓學(xué)生自主小結(jié)本節(jié)收獲,并給他們提出困惑的時間和機會

在本節(jié)課中我感覺學(xué)生整體來說收獲不小,有百分之八十的學(xué)生都會進行計算,只是對這些三角函數(shù)值的記憶還有欠缺,課下還需時間加以鞏固。課堂中學(xué)生積極性也很高,能體會到數(shù)學(xué)在生活中的應(yīng)用廣泛,學(xué)習(xí)數(shù)學(xué)對解決實際生活問題的幫助,體會到學(xué)習(xí)數(shù)學(xué)的重要性。

集合高中數(shù)學(xué)教案篇4

一、教材分析

1.教材所處的地位和作用

在學(xué)習(xí)了隨機事件、頻率、概率的意義和性質(zhì)及用概率解決實際問題和古典概型的概念后,進一步體會用頻率估計概率思想。它是對古典概型問題的一種模擬,也是對古典概型知識的深化,同時它也是為了更廣泛、高效地解決一些實際問題、體現(xiàn)信息技術(shù)的優(yōu)越性而新增的內(nèi)容。

2.教學(xué)的重點和難點

重點:正確理解隨機數(shù)的概念,并能應(yīng)用計算器或計算機產(chǎn)生隨機數(shù)。

難點:建立概率模型,應(yīng)用計算器或計算機來模擬試驗的方法近似計算概率,解決一些較簡單的現(xiàn)實問題。

二、教學(xué)目標(biāo)分析

1、知識與技能:

(1)了解隨機數(shù)的概念;

(2)利用計算機產(chǎn)生隨機數(shù),并能直接統(tǒng)計出頻數(shù)與頻率。

2、過程與方法:

(1)通過對現(xiàn)實生活中具體的概率問題的探究,感知應(yīng)用數(shù)學(xué)解決問題的方法,體會數(shù)學(xué)知識與現(xiàn)實世界的聯(lián)系,培養(yǎng)邏輯推理能力;

(2)通過模擬試驗,感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動手、動腦的良好習(xí)慣

3、情感態(tài)度與價值觀:

通過數(shù)學(xué)與探究活動,體會理論來源于實踐并應(yīng)用于實踐的辯證唯物主義觀點.

三、教學(xué)方法與手段分析

1、教學(xué)方法:本節(jié)課我主要采用啟發(fā)探究式的教學(xué)模式。

2、教學(xué)手段:利用多媒體技術(shù)優(yōu)化課堂教學(xué)

四、教學(xué)過程分析

㈠創(chuàng)設(shè)情境、引入新課

情境1:假設(shè)你作為一名食品衛(wèi)生工作人員,要對某超市內(nèi)的80袋小包裝餅干中抽取10袋進行衛(wèi)生達標(biāo)檢驗,你打算如何操作?

預(yù)設(shè)學(xué)生回答:

⑴采用簡單隨機抽樣方法(抽簽法)

⑵采用簡單隨機抽樣方法(隨機數(shù)表法)

教師總結(jié)得出:隨機數(shù)就是在一定范圍內(nèi)隨機產(chǎn)生的數(shù),并且得到這個范圍內(nèi)每一數(shù)的機會一樣。(引入課題)

「設(shè)計意圖」(1)回憶統(tǒng)計知識中利用隨機抽樣方法如抽簽法、隨機數(shù)表法等進行抽樣的步驟和特征;(2)從具體試驗中了解隨機數(shù)的含義。

情境2:在拋硬幣和擲骰子的試驗中,是用頻率估計概率。假如現(xiàn)在要作10000次試驗,你打算怎么辦?大家可能覺得這樣做試驗花費時間太多了,有沒有其他方法可以代替試驗?zāi)?

「設(shè)計意圖」當(dāng)需要隨機數(shù)的量很大時,用手工試驗產(chǎn)生隨機數(shù)速度太慢,從而說明利用現(xiàn)代信息技術(shù)的重要性,體現(xiàn)利用計算器或計算機產(chǎn)生隨機數(shù)的必要性。

㈡操作實踐、了解新知

教師:向?qū)W生介紹計算器的操作,讓他們了解隨機函數(shù)的原理??墒孪染幹茙讉€小問題,在課堂上帶著學(xué)生用計算器(科學(xué)計算器或圖形計算器)操作一遍,讓學(xué)生熟悉如何用計算器產(chǎn)生隨機數(shù)。

「設(shè)計意圖」通過操作熟悉計算器操作流程,在明白原理后,通過讓學(xué)生自己按照規(guī)則操作,熟悉計算器產(chǎn)生隨機數(shù)的操作流程,了解隨機數(shù)。

問題1:拋一枚質(zhì)地均勻的硬幣出現(xiàn)正面向上的概率是50,你能設(shè)計一種利用計算器模擬擲硬幣的試驗來驗證這個結(jié)論嗎?

思考:隨著模擬次數(shù)的不同,結(jié)果是否有區(qū)別,為什么?

「設(shè)計意圖」⑴設(shè)計概率模型是解決概率問題的難點,也是能解決概率問題的關(guān)鍵,是數(shù)學(xué)建模的第一步。⑵拋硬幣是最熟悉、最簡單的問題,很自然會想到把正面向上、反面向上這兩個基本事件用兩個隨機數(shù)來代替。(題目讓學(xué)生通過熟悉50想到用隨機數(shù)0,1來模擬,為后面問題4每天下雨的概率為40的概率建模作第一次小鋪墊。)⑶熟悉利用計算器模擬試驗的操作流程,為解決后面例題模擬下雨作好鋪墊。

問題2:(1)剛才我們利用了計算器來產(chǎn)生隨機數(shù),我們知道計算機有許多軟件有統(tǒng)計功能,你知道哪些軟件具有隨機函數(shù)這個功能?

(2)你會利用統(tǒng)計軟件Excel來產(chǎn)生隨機數(shù)0,1嗎?你能設(shè)計一種利用計算機模擬擲硬幣的試驗嗎?

「設(shè)計意圖」⑴了解有許多統(tǒng)計軟件都有隨機函數(shù)這個功能,并與前面第一章所學(xué)的用程序語言編寫程序相聯(lián)系;⑵Excel是學(xué)生比較熟悉的統(tǒng)計軟件,也可讓學(xué)生回顧初中用Excel畫統(tǒng)計圖的一些功能和知識,其次讓學(xué)生掌握多種隨機模擬試驗方法。

問題3:(1)你能在Excel軟件中畫試驗次數(shù)從1到100次的頻率分布折線圖嗎?

(2)當(dāng)試驗次數(shù)為1000,1500時,你能說說出現(xiàn)正面向上的頻率有些什么變化?

「設(shè)計意圖」⑴應(yīng)用隨機模擬方法估計古典概型中隨機事件的概率值;

⑵體會頻率的隨機性與相對穩(wěn)定性,經(jīng)歷用計算機產(chǎn)生數(shù)據(jù),整理數(shù)據(jù),分析數(shù)據(jù),畫統(tǒng)計圖的全過程,使學(xué)生相信統(tǒng)計結(jié)果的真實性、隨機性及規(guī)律性。

㈢講練結(jié)合、鞏固新知

問題4:天氣預(yù)報說,在今后的三天中,每一天下雨的概率均為40,這三天中恰有兩天下雨的概率是多少?

問1:能用古典概型的計算公式求解嗎?

你能說明一下這為什么不是古典概型嗎?

問2:你如何模擬每一天下雨的概率為40?

「設(shè)計意圖」⑴問題分層提出,降低本題難度。如何模擬每一天下雨的概率40是解決這道題的關(guān)鍵,是隨機模擬方法應(yīng)用的重點,也是難點之一。

⑵鞏固用隨機模擬方法估計未知量的基本思想,明確利用隨機模擬方法也可解決不是古典概型而比較復(fù)雜的概率應(yīng)用題。

歸納步驟:第一步,設(shè)計概率模型;

第二步,進行模擬試驗;

方法一:(隨機模擬方法--計算器模擬)利用計算器隨機函數(shù);

方法二:(隨機模擬方法--計算機模擬)

第三步,統(tǒng)計試驗的結(jié)果。

課堂檢測將一枚質(zhì)地均勻的硬幣連擲三次,出現(xiàn)"2個正面朝上、1個反面朝上"和"1個正面朝上、2個反面朝上"的概率各是多少?并用隨機模擬的方法做100次試驗,計算各自的頻數(shù)。

「設(shè)計意圖」通過練習(xí),進一步鞏固學(xué)生對本節(jié)課知識的掌握。

㈣歸納小結(jié)

(1)你能歸納利用隨機模擬方法估計概率的步驟嗎?

(2)你能體會到隨機模擬的優(yōu)勢嗎?請舉例說說。

「設(shè)計意圖」⑴通過問題的思考和解決,使學(xué)生理解模擬方法的優(yōu)點,并充分利用信息技術(shù)的優(yōu)勢;⑵是對知識的進一步理解與思考,又是對本節(jié)內(nèi)容的回顧與總結(jié)。

㈤布置練習(xí):

課本練習(xí)3、4

「設(shè)計意圖」課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。

[內(nèi)容結(jié)束]

集合高中數(shù)學(xué)教案篇5

目標(biāo)

1、通過觀察粘貼活動,尋找兩個集合交集、差集中元素,依據(jù)特征進行嘗試擺放;發(fā)展幼兒多緯度的思維能力。

2、培養(yǎng)幼兒的嘗試精神,發(fā)展幼兒思維的敏捷性、邏輯性。

3、有興趣參加數(shù)學(xué)活動。

準(zhǔn)備

?水果找家》、《圖形組合物》幻燈片個1張(no.86—87),幼兒每人相同內(nèi)容練習(xí)紙2張(見練習(xí)冊no.4—5),如圖(1)和圖(2)。

過程

(一)觀察

1、出示《水果》幻燈片,引導(dǎo)幼兒思考:

(1)兩個圈內(nèi)分別有什么?各有幾個?

(2)左圈內(nèi)的水果么特征?(有葉子)

(3)右圈內(nèi)的水果么特征?(有梗子)

(4)兩圈相交部分中的水果么特征?(有葉子且有梗子)

2、出示《圖形組合物》幻燈片,引導(dǎo)幼兒思考:

(1)兩個圈內(nèi)分別有什么特征?各有一個?

(2)左圈內(nèi)的東西有什么特征?(紅色)

(3)右圈內(nèi)的東西有什么特征?(個數(shù)是5個)

(4)兩圈相交部分中的東西有什么特征?(紅色且個數(shù)是5個)

(二)區(qū)分

讓幼兒思考:依據(jù)特征,如把右邊的水果或左邊的娃娃臉擺放到圈內(nèi),該分別放在哪里?

個別幼兒口述位置和理由,如圖(1)中的桃子該放在左圈但不在右圈中,因為桃子有葉無梗;圖(2)中的圓臉娃娃該放在兩圈相交部分,因為她是紅色且組成的圓形個數(shù)是5個。

(三)粘貼

幼兒在練習(xí)紙上將左(右)邊的各圖示物一一撕下,分別粘貼在兩個圈中的相對位置。

(教師巡回指導(dǎo),幫助幼兒正確粘貼)

建議

(一)本活動設(shè)計內(nèi)容亦可分兩次進行。

(二)亦可用實物材料在集合擺放圈中進行分類擺放,見《兒童數(shù)形寶盒》說明圖29。觀察記錄與評估。

集合高中數(shù)學(xué)教案篇6

一、教學(xué)內(nèi)容分析

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象,恰當(dāng)?shù)乩枚x解題,許多時候能以簡馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。

二、學(xué)生學(xué)習(xí)情況分析

我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達能力也略顯不足。

三、設(shè)計思想

由于這部分知識較為抽象,如果離開感性認識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情。在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。

四、教學(xué)目標(biāo)

1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點坐標(biāo)、頂點坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。

2、通過對練習(xí),強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

五、教學(xué)重點與難點:

教學(xué)重點

1、對圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學(xué)難點:

巧用圓錐曲線定義解題

六、教學(xué)過程設(shè)計

【設(shè)計思路】

(一)開門見山,提出問題

一上課,我就直截了當(dāng)?shù)亟o出例題1:

(1)已知A(-2,0),B(2,0)動點M滿足MA+MB=2,則點M的軌跡是()。

(A)橢圓(B)雙曲線(C)線段(D)不存在

(2)已知動點M(x,y)滿足(x1)2(y2)23x4y,則點M的軌跡是()。

(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

【設(shè)計意圖】

定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個必備條件,而通過一個階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準(zhǔn)備了兩道練習(xí)題。

【學(xué)情預(yù)設(shè)】

估計多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25

這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子3x4y5入手,考慮通過適當(dāng)?shù)淖冃?,轉(zhuǎn)化為學(xué)生們熟知的兩個距離公式。

在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實軸長為,焦距為。以深化對概念的理解。

(二)理解定義、解決問題

例2:

(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。

(2)在(1)的條件下,給定點P(-2,2),求PA

【設(shè)計意圖】

運用圓錐曲線定義中的數(shù)量關(guān)系進行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。

【學(xué)情預(yù)設(shè)】

根據(jù)以往的經(jīng)驗,多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點A的軌跡,有了練習(xí)題1的鋪墊,這個問題對學(xué)生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。

(三)自主探究、深化認識

如果時間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗的機會。

練習(xí):

設(shè)點Q是圓C:(x1)2225AB的最小值。3y225上動點,點A(1,0)是圓內(nèi)一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。

引申:若將點A移到圓C外,點M的軌跡會是什么?

【設(shè)計意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺,當(dāng)然,如果課堂上時間允許的話,

可借助“多媒體課件”,引導(dǎo)學(xué)生對自己的結(jié)論進行驗證。

【知識鏈接】

(一)圓錐曲線的定義

1、圓錐曲線的第一定義

2、圓錐曲線的統(tǒng)一定義

(二)圓錐曲線定義的應(yīng)用舉例

1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準(zhǔn)線的距離。

2、PF1PF22P為等軸雙曲線x2y2a2上一點,F(xiàn)1、F2為兩焦點,O為雙曲線的中心,求的PO取值范圍。

3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標(biāo)。

4、例題:

(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求MA+MF的最小值。

(2)已知A(,3)為一定點,F(xiàn)為雙曲線1的右焦點,M在雙曲線右支上移動,當(dāng)AMMF最小時,求M點的坐標(biāo)。

(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使PM+FM最小。

5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點,M是橢圓上的動點,求MA+MB的最小值與最大值。

七、教學(xué)反思

1、本課將借助于,將使全體學(xué)生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學(xué),節(jié)省了板演的時間,從而給學(xué)生留出更多的時間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機結(jié)合的教學(xué)優(yōu)勢。

2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實上,學(xué)生們的思維運動量并不會小。

總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識,自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實踐的機會,能夠使學(xué)生在學(xué)習(xí)新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

集合高中數(shù)學(xué)教案篇7

一、課前檢測

1.在數(shù)列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求數(shù)列{bn}的前n項的和.

解:由已知得:an=1n+1(1+2+3++n)=n2,

bn=2n2n+12=8(1n-1n+1)數(shù)列{bn}的前n項和為

Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.

2.已知在各項不為零的數(shù)列中,。

(1)求數(shù)列的通項;

(2)若數(shù)列滿足,數(shù)列的前項的和為,求

解:(1)依題意,,故可將整理得:

所以即

,上式也成立,所以

(2)

二、知識梳理

(一)前n項和公式Sn的定義:Sn=a1+a2+an。

(二)數(shù)列求和的方法(共8種)

5.錯位相減法:適用于差比數(shù)列(如果等差,等比,那么叫做差比數(shù)列)即把每一項都乘以的公比,向后錯一項,再對應(yīng)同次項相減,轉(zhuǎn)化為等比數(shù)列求和。

如:等比數(shù)列的前n項和就是用此法推導(dǎo)的.

解讀:

6.累加(乘)法

解讀:

7.并項求和法:一個數(shù)列的前n項和中,可兩兩結(jié)合求解,則稱之為并項求和.

形如an=(-1)nf(n)類型,可采用兩項合并求。

解讀:

8.其它方法:歸納、猜想、證明;周期數(shù)列的求和等等。

解讀:

三、典型例題分析

題型1錯位相減法

例1求數(shù)列前n項的和.

解:由題可知{}的通項是等差數(shù)列{2n}的通項與等比數(shù)列{}的通項之積

設(shè)①

②(設(shè)制錯位)

①-②得(錯位相減)

變式訓(xùn)練1(20__昌平模擬)設(shè)數(shù)列{an}滿足a1+3a2+32a3++3n-1an=n3,nN__.

(1)求數(shù)列{an}的通項公式;

(2)設(shè)bn=nan,求數(shù)列{bn}的&39;前n項和Sn.

解:(1)∵a1+3a2+32a3++3n-1an=n3,①

當(dāng)n2時,a1+3a2+32a3++3n-2an-1=n-13.②

①-②得3n-1an=13,an=13n.

在①中,令n=1,得a1=13,適合an=13n,an=13n.

(2)∵bn=nan,bn=n3n.

Sn=3+232+333++n3n,③

3Sn=32+233+334++n3n+1.④

④-③得2Sn=n3n+1-(3+32+33++3n),

即2Sn=n3n+1-3(1-3n)1-3,Sn=(2n-1)3n+14+34.

小結(jié)與拓展:

題型2并項求和法

例2求=1002-992+982-972++22-12

解:=1002-992+982-972++22-12=(100+99)+(98+97)++(2+1)=5050.

變式訓(xùn)練2數(shù)列{(-1)nn}的前20__項的和S2010為(D)

A.-20__B.-1005C.20__D.1005

解:S2010=-1+2-3+4-5++2008-2009+2010

=(2-1)+(4-3)+(6-5)++(2010-2009)=1005.

小結(jié)與拓展:

題型3累加(乘)法及其它方法:歸納、猜想、證明;周期數(shù)列的求和等等

例3(1)求之和.

(2)已知各項均為正數(shù)的數(shù)列{an}的前n項的乘積等于Tn=(nN__),

,則數(shù)列{bn}的前n項和Sn中最大的一項是(D)

A.S6B.S5C.S4D.S3

解:(1)由于(找通項及特征)

=(分組求和)==

=

(2)D.

變式訓(xùn)練3(1)(20__福州八中)已知數(shù)列則,。答案:100.5000。

(2)數(shù)列中,,且,則前20__項的和等于(A)

A.1005B.20__C.1D.0

小結(jié)與拓展:

四、歸納與總結(jié)(以學(xué)生為主,師生共同完成)

以上一個8種方法雖然各有其特點,但總的原則是要善于改變原數(shù)列的形式結(jié)構(gòu),使

其能進行消項處理或能使用等差數(shù)列或等比數(shù)列的求和公式以及其它已知的基本求和公式來解決,只要很好地把握這一規(guī)律,就能使數(shù)列求和化難為易,迎刃而解。

集合高中數(shù)學(xué)教案篇8

1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應(yīng)用。

(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象。

(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。

2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。

3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進行對稱美,簡潔美等審美教育,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。

高一數(shù)學(xué)對數(shù)函數(shù)教案:教材分析

(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ)。

(2)本節(jié)的教學(xué)重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點。

(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點。

高一數(shù)學(xué)對數(shù)函數(shù)教案:教法建議

(1)對數(shù)函數(shù)在引入時,就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

(2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點,一定要讓學(xué)生動手做,動腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強了學(xué)生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。

集合高中數(shù)學(xué)教案篇9

課題:

等比數(shù)列的概念

教學(xué)目標(biāo)

1、通過教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項公式、

2、使學(xué)生進一步體會類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、

3、培養(yǎng)學(xué)生勤于思考,實事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、

教學(xué)重點,難點

重點、難點是等比數(shù)列的定義的歸納及通項公式的推導(dǎo)、

教學(xué)用具

投影儀,多媒體軟件,電腦、

教學(xué)方法

討論、談話法、

教學(xué)過程

一、提出問題

給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn)、(幻燈片)

①—2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,—1,1,—1,1,—1,1,—1,…

⑦1,—10,100,—1000,10000,—100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生發(fā)表意見(可能按項與項之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列)、

二、講解新課

請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題、假設(shè)每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設(shè)開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)

這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲分裂的多媒體軟件的第一步)

等比數(shù)列(板書)

1、等比數(shù)列的定義(板書)

根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出等比數(shù)列的定義,標(biāo)注出重點詞語、

請學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例、而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時,數(shù)列既是等差又是等比數(shù)列,當(dāng)時,它只是等差數(shù)列,而不是等比數(shù)列、教師追問理由,引出對等比數(shù)列的認識:

2、對定義的認識(板書)

(1)等比數(shù)列的首項不為0;

(2)等比數(shù)列的每一項都不為0,即

問題:一個數(shù)列各項均不為0是這個數(shù)列為等比數(shù)列的什么條件?

(3)公比不為0、

用數(shù)學(xué)式子表示等比數(shù)列的定義、

是等比數(shù)列

①、在這個式子的寫法上可能會有一些爭議,如寫成

,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為

是等比數(shù)列?為什么不能?式子給出了數(shù)列第項與第

項的數(shù)量關(guān)系,但能否確定一個等比數(shù)列?(不能)確定一個等比數(shù)列需要幾個條件?當(dāng)給定了首項及公比后,如何求任意一項的值?所以要研究通項公式、

3、等比數(shù)列的通項公式(板書)

問題:用和表示第項

①不完全歸納法

②疊乘法,…,,這個式子相乘得,所以(板書)

(1)等比數(shù)列的通項公式得出通項公式后,讓學(xué)生思考如何認識通項公式、(板書)

(2)對公式的認識

由學(xué)生來說,最后歸結(jié):

①函數(shù)觀點;

②方程思想(因在等差數(shù)列中已有認識,此處再復(fù)習(xí)鞏固而已)、

這里強調(diào)方程思想解決問題、方程中有四個量,知三求一,這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個條件,就多知道了一個量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。

三、小結(jié)

1、本節(jié)課研究了等比數(shù)列的概念,得到了通項公式;

2、注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

3、用方程的思想認識通項公式,并加以應(yīng)用。

探究活動

將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。

參考答案:

30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應(yīng)是粒,用計算器算一下吧(對數(shù)算也行)。

集合高中數(shù)學(xué)教案篇10

教學(xué)目標(biāo)

1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應(yīng)用.

(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.

(2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題.

2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.

3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進行對稱美,簡潔美等審美教育,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.

教學(xué)建議

教材分析

(1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ).

(2) 本節(jié)的教學(xué)重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點.

(3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點.

教法建議

(1) 對數(shù)函數(shù)在引入時,就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù) 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

(2) 在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點,一定要讓學(xué)生動手做,動腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強了學(xué)生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.

集合高中數(shù)學(xué)教案篇11

教學(xué)分析

本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實數(shù)理論的進一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.

通過本節(jié)課的學(xué)習(xí), 讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,并充分認識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點進行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識和方法的應(yīng)用,同時也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.

在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實數(shù)與數(shù)軸上 點的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認識.

三維目標(biāo)

1.在學(xué)生了解不等式產(chǎn)生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關(guān)系,理解實數(shù)大小與數(shù)軸上對應(yīng)點位置間的關(guān)系.

2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.

3.通過溫故知新,提高學(xué)生對不等式的認識,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.

重點難點

教學(xué)重點:比較實數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.

教學(xué)難點:準(zhǔn)確比較兩個代數(shù)式的大小.

課時安排

1課時

教學(xué)過程

導(dǎo)入新課

思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強烈愿望,自然地引入新課.

思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠近、百米賽跑的時間、數(shù)學(xué)成績的多少等現(xiàn)實生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué) 生用數(shù)學(xué)的觀點進行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實世界和日常生活中大量存在著.這樣學(xué)生會由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進入進一步的探究學(xué)習(xí),由此引入新課.

推進新課

新知探究

提出問題

?1?回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?

?2?在現(xiàn)實世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實際例子嗎?

?3?數(shù)軸上的任意兩 點與對應(yīng)的兩實數(shù)具有怎樣的關(guān)系?

?4?任意兩個實數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達這個關(guān)系?

活動:教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強調(diào)的是關(guān)系,可用符號“>”“<”“≠”“≥”“≤”表示,而不等式則是表示兩者的不等關(guān)系,可用“a>b”“a

教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實際背景的前提下,進一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.

實例1:某天的天氣預(yù)報報道,氣溫32 ℃,最低氣溫26 ℃.

實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則xA

實例3:若一個數(shù)是非負數(shù),則這個數(shù)大于或等于零.

實例4:兩點之間線段最短.

實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.

實例6:限速40 km/h的路標(biāo)指示司機在前方路段行駛時,應(yīng)使汽車的速度v不超過40 km/h.

實例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.

教師進一步點撥:能夠發(fā)現(xiàn)身 邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點進行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.

教師引導(dǎo)學(xué)生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負數(shù),則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.

|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交換被減數(shù)與減數(shù)的位置也可以.

實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應(yīng)點撥學(xué)生注意酸奶中的脂肪含量與蛋白質(zhì)含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.

對以上問題,教師讓學(xué)生輪流回答,再用投影儀給出課本上的兩個結(jié)論.

討論結(jié)果:

(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應(yīng)的實數(shù)比左邊點對應(yīng)的實數(shù)大.

(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a應(yīng)用示例

例1(教材本節(jié)例1和例2)

活動:通過兩例讓學(xué)生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.

點評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握.

變式訓(xùn)練

1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是(  )

A.f(x)>g(x)       B.f(x)=g(x)

C.f(x)

答案:A

解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).

2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.

解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.

∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.

例2比較下列各組數(shù)的大小(a≠b).

(1)a+b2與21a+1b(a>0,b>0);

(2)a4-b4與4a3(a-b).

活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學(xué)生獨立完成,但要點撥學(xué)生在最后的符號判斷說理中,要理由充分,不可忽略這點.

解:(1)a+b2-21a+1b=a+b2-2aba+b=?a+b?2-4ab2?a+b?=?a-b?22?a+b?.

∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴?a-b?22?a+b?>0,即a+b2>21a+1b.

(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時取等號),

又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.

∴a4-b4<4a3(a-b).

點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.

變式訓(xùn)練

已知x>y,且y≠0,比較xy與1的大小.

活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.

解:xy-1=x-yy.

∵x>y,∴x-y>0.

當(dāng)y<0時,x-yy<0,即xy-1<0. ∴xy<1;

當(dāng)y>0時,x-yy>0,即xy-1>0.∴xy>1.

點評:當(dāng)字母y取不同范圍的值時,差xy-1的正負情況不同,所以需對y分類討論.

例3建筑設(shè)計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積, 住宅的采光條件是變好了,還是變壞了?請說明理由.

活動:解題關(guān)鍵首先是把文 字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.

解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a

由于a+mb+m-ab=m?b-a?b?b+m?>0,于是a+mb+m>ab.又ab≥10%,

因此a+mb+m>ab≥10%.

所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.

點評:一般地,設(shè)a、b為正實數(shù),且a

變式訓(xùn)練

已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則(  )

A.a1+a8>a4+a5        B.a1+a8

C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定

答案:A

解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

∵{an}各項都大于零,∴q>0,即1+q>0.

又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.

課堂小結(jié)

1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實數(shù)的基本性質(zhì)的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識體系中.

2.教師畫龍點睛,點撥利用實數(shù)的基本性質(zhì)對兩個實數(shù)大小比較時易錯的地方.鼓勵學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進一步的探究.

作業(yè)

習(xí)題3—1A組3;習(xí)題3—1B組2.

設(shè)計感想

1.本節(jié)設(shè)計關(guān)注了教學(xué)方法 的優(yōu)化.經(jīng)驗告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計最能體現(xiàn)教學(xué)規(guī)律的教學(xué) 過程,不宜長期使用一種固定的教學(xué)方法,或原封不動地照搬一種實驗?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動.也就是說,世上沒有萬能的教學(xué)方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.

2.本節(jié)設(shè)計注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷 來是高考的重點與熱點.作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負面影響.

3.本節(jié)設(shè)計關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點撥反思有助于學(xué)生思維批判性品質(zhì)的提升.

集合高中數(shù)學(xué)教案篇12

教學(xué)內(nèi)容:簡單的排列和組合

教學(xué)目標(biāo):

1.知識能力目標(biāo):

①通過觀察、猜測、比較、實驗等活動,找出最簡單的事物的排列數(shù)和組合數(shù)。

②初步培養(yǎng)有序地全面地思考問題的能力。

③培養(yǎng)初步的觀察、分析、及推理能力。

2.情感態(tài)度目標(biāo):

①感受數(shù)學(xué)與生活的密切聯(lián)系,激發(fā)學(xué)習(xí)數(shù)學(xué)、探索數(shù)學(xué)的濃厚興趣。

②初步培養(yǎng)有順序地、全面地思考問題的意識。

③使學(xué)生在數(shù)學(xué)活動中養(yǎng)成與人合作的良好習(xí)慣。

教學(xué)重點:

經(jīng)歷探索簡單事物排列與組合規(guī)律的過程。

教學(xué)難點:

初步理解簡單事物排列與組合的不同。

教學(xué)準(zhǔn)備:

多媒體課件、數(shù)字卡片、1角、2角、5角的人民幣。

教學(xué)過程:

一、創(chuàng)設(shè)情境,引發(fā)探究

師:今天老師帶你們?nèi)ヒ粋€很有趣的地方,哪呢?我們今天要到“數(shù)學(xué)廣角”里去走一走、看一看。

二、操作探究,學(xué)習(xí)新知。

(一)組合問題

l、看一看,說一說

師:今天老師給大家?guī)砹藥准恋囊路銈儊硖暨x吧。(課件出示主題圖)

師引導(dǎo)思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學(xué)生說一說)

2、想一想,擺一擺

(l)引導(dǎo)討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復(fù)呢?

①學(xué)生小組討論交流,老師參與小組討論。

②學(xué)生匯報

(2)引導(dǎo)操作:小組同學(xué)互相合作,把你們設(shè)計的穿法有序的貼在紙板上。(要求:小組長拿出學(xué)具衣服圖片、紙板。)

①學(xué)生小組合作操作擺,教師巡視參與小組活動。

②學(xué)生展示作品,介紹搭配方案。

③生生互相評價。

(3)師引導(dǎo)觀察:

第一種方案(按上裝搭配下裝)有幾種穿法?(4種)

第二種方案(按下裝搭配上裝)有幾種穿法?(4種)

師小結(jié):不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復(fù)、不遺漏的把所有的方法找出來。在今后的學(xué)習(xí)和生活中,我們還會遇到許多這樣的問題,我們都可以運用有序的思考方法來解決它們。、操作探究,學(xué)習(xí)新知。

(二)排列問題

1、初步感知排列

(1)師:我們穿上漂亮的衣服,來到了數(shù)學(xué)廣角,可是這有一扇密碼門,(出示課件:密碼門)我們只要說對密碼,就可以到數(shù)學(xué)廣角游玩了。看小精靈給了我們提示(點小精靈)你們猜密碼是什么?

(2)學(xué)生猜密碼(情景預(yù)設(shè):有的學(xué)生說是12,有的學(xué)生說是21。)

(3)試密碼,打開密碼門,進入數(shù)學(xué)廣角樂園。

2、合作探究排列

(1)師問:數(shù)學(xué)廣角樂園美不美呀?(學(xué)生回答)它雖然很美,可處處充滿著挑戰(zhàn),你們愿意接受嗎?(學(xué)生回答)那么我們先到數(shù)學(xué)樂園里去看一看吧?。c數(shù)學(xué)樂園)

(2)師:同學(xué)們,我們到了數(shù)學(xué)樂園里看到了什么呀?(回答)現(xiàn)在我們每個人都當(dāng)一個小魔術(shù)師看誰的本領(lǐng)大?誰能把1、2、3這三個數(shù)字變成兩位數(shù),看誰變得最多?

(3)學(xué)生活動,師巡視指導(dǎo)

(4)學(xué)生匯報擺法,師板書。。

方法一:每次拿出兩張數(shù)字卡片能擺出不同的兩位數(shù);

方法二:固定十位上的數(shù)字,交換個位數(shù)字得到不同的.兩位數(shù);

方法三:固定個位上的數(shù)字,交換十位數(shù)字得到不同的兩位

(5)小結(jié)。

三、課堂實踐,鞏固新知

1、握手游戲:

師:同學(xué)們真棒!都能把數(shù)字1、2、3組成不同的兩位數(shù),而且不重復(fù)、不遺漏。下面老師帶大家到運動樂園去看一看。(出示課件)看小朋友們在干什么?(生回答)

師:看到他們握手,老師有一個問題需要大家?guī)椭鉀Q一下。

(1)出示問題

(2)小組活動:握手

(3)抽生上臺表演

(4)小結(jié)。

2、乒乓球比賽

三個人進行乒乓球比賽要舉行幾場?

(1)小組討論

(2)學(xué)生匯報

(3)小結(jié)

3、生活樂園

看來數(shù)學(xué)廣角處處充滿挑戰(zhàn)一點不假,你們愿不愿意接受新的挑戰(zhàn)?(生)那我們一起到生活樂園去看一看吧!出示《生活樂園》課件。

(1)看課件

(2)學(xué)生活動

(3)學(xué)生匯報,師相機演示課件。

四、全課總結(jié)

今天我們到數(shù)學(xué)樂園玩的開不開心?看到了什么?你有什么收獲?

集合高中數(shù)學(xué)教案篇13

●知識梳理

函數(shù)的綜合應(yīng)用主要體現(xiàn)在以下幾方面:

1.函數(shù)內(nèi)容本身的相互綜合,如函數(shù)概念、性質(zhì)、圖象等方面知識的綜合.

2.函數(shù)與其他數(shù)學(xué)知識點的綜合,如方程、不等式、數(shù)列、解析幾何等方面的內(nèi)容與函數(shù)的綜合.這是高考主要考查的內(nèi)容.

3.函數(shù)與實際應(yīng)用問題的綜合.

●點擊雙基

1.已知函數(shù)f(x)=lg(2x-b)(b為常數(shù)),若x[1,+)時,f(x)0恒成立,則

A.b1B.b1C.b1D.b=1

解析:當(dāng)x[1,+)時,f(x)0,從而2x-b1,即b2x-1.而x[1,+)時,2x-1單調(diào)增加,

b2-1=1.

答案:A

2.若f(x)是R上的減函數(shù),且f(x)的圖象經(jīng)過點A(0,3)和B(3,-1),則不等式f(x+1)-12的解集是___________________.

解析:由f(x+1)-12得-2

又f(x)是R上的減函數(shù),且f(x)的圖象過點A(0,3),B(3,-1),

f(3)

答案:(-1,2)

●典例剖析

【例1】取第一象限內(nèi)的點P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差數(shù)列,1,y1,y2,2依次成等比數(shù)列,則點P1、P2與射線l:y=x(x0)的關(guān)系為

A.點P1、P2都在l的上方B.點P1、P2都在l上

C.點P1在l的下方,P2在l的上方D.點P1、P2都在l的下方

剖析:x1=+1=,x2=1+=,y1=1=,y2=,∵y1

P1、P2都在l的下方.

答案:D

【例2】已知f(x)是R上的偶函數(shù),且f(2)=0,g(x)是R上的奇函數(shù),且對于xR,都有g(shù)(x)=f(x-1),求f(20__)的值.

解:由g(x)=f(x-1),xR,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),

故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=

g(x-3)=f(x-4),也即f(x+4)=f(x),xR.

f(x)為周期函數(shù),其周期T=4.

f(20__)=f(4500+2)=f(2)=0.

評述:應(yīng)靈活掌握和運用函數(shù)的奇偶性、周期性等性質(zhì).

【例3】函數(shù)f(x)=(m0),x1、x2R,當(dāng)x1+x2=1時,f(x1)+f(x2)=.

(1)求m的值;

(2)數(shù)列{an},已知an=f(0)+f()+f()++f()+f(1),求an.

解:(1)由f(x1)+f(x2)=,得+=,

4+4+2m=[4+m(4+4)+m2].

∵x1+x2=1,(2-m)(4+4)=(m-2)2.

4+4=2-m或2-m=0.

∵4+42=2=4,

而m0時2-m2,4+42-m.

m=2.

(2)∵an=f(0)+f()+f()++f()+f(1),an=f(1)+f()+f()++f()+f(0).

2an=[f(0)+f(1)]+[f()+f()]++[f(1)+f(0)]=+++=.

an=.

深化拓展

用函數(shù)的思想處理方程、不等式、數(shù)列等問題是一重要的思想方法.

【例4】函數(shù)f(x)的定義域為R,且對任意x、yR,有f(x+y)=f(x)+f(y),且當(dāng)x0時,f(x)0,f(1)=-2.

(1)證明f(x)是奇函數(shù);

(2)證明f(x)在R上是減函數(shù);

(3)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

(1)證明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),f(0)=0.從而有f(x)+f(-x)=0.

f(-x)=-f(x).f(x)是奇函數(shù).

(2)證明:任取x1、x2R,且x10.f(x2-x1)0.

-f(x2-x1)0,即f(x1)f(x2),從而f(x)在R上是減函數(shù).

(3)解:由于f(x)在R上是減函數(shù),故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(-2)=-6,f(-3)=-f(3)=6.從而最大值是6,最小值是-6.

深化拓展

對于任意實數(shù)x、y,定義運算x__y=ax+by+cxy,其中a、b、c是常數(shù),等式右邊的運算是通常的加法和乘法運算.現(xiàn)已知1__2=3,2__3=4,并且有一個非零實數(shù)m,使得對于任意實數(shù)x,都有x__m=x,試求m的值.

提示:由1__2=3,2__3=4,得

b=2+2c,a=-1-6c.

又由x__m=ax+bm+cmx=x對于任意實數(shù)x恒成立,

b=0=2+2c.

c=-1.(-1-6c)+cm=1.

-1+6-m=1.m=4.

答案:4.

●闖關(guān)訓(xùn)練

夯實基礎(chǔ)

1.已知y=f(x)在定義域[1,3]上為單調(diào)減函數(shù),值域為[4,7],若它存在反函數(shù),則反函數(shù)在其定義域上

A.單調(diào)遞減且最大值為7B.單調(diào)遞增且最大值為7

C.單調(diào)遞減且最大值為3D.單調(diào)遞增且最大值為3

解析:互為反函數(shù)的兩個函數(shù)在各自定義區(qū)間上有相同的增減性,f-1(x)的值域是[1,3].

答案:C

2.關(guān)于x的方程x2-4x+3-a=0有三個不相等的實數(shù)根,則實數(shù)a的值是___________________.

解析:作函數(shù)y=x2-4x+3的圖象,如下圖.

由圖象知直線y=1與y=x2-4x+3的圖象有三個交點,即方程x2-4x+3=1也就是方程x2-4x+3-1=0有三個不相等的實數(shù)根,因此a=1.

答案:1

3.若存在常數(shù)p0,使得函數(shù)f(x)滿足f(px)=f(px-)(xR),則f(x)的一個正周期為__________.

解析:由f(px)=f(px-),

令px=u,f(u)=f(u-)=f[(u+)-],T=或的整數(shù)倍.

答案:(或的整數(shù)倍)

4.已知關(guān)于x的方程sin2x-2sinx-a=0有實數(shù)解,求a的取值范圍.

解:a=sin2x-2sinx=(sinx-1)2-1.

∵-11,0(sinx-1)24.

a的范圍是[-1,3].

5.記函數(shù)f(x)=的定義域為A,g(x)=lg[(x-a-1)(2a-x)](a1)的定義域為B.

(1)求A;

(2)若BA,求實數(shù)a的取值范圍.

解:(1)由2-0,得0,

x-1或x1,即A=(-,-1)[1,+).

(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.

∵a1,a+12a.B=(2a,a+1).

∵BA,2a1或a+1-1,即a或a-2.

而a1,1或a-2.

故當(dāng)BA時,實數(shù)a的取值范圍是(-,-2][,1).

培養(yǎng)能力

6.(理)已知二次函數(shù)f(x)=x2+bx+c(b0,cR).

若f(x)的定義域為[-1,0]時,值域也是[-1,0],符合上述條件的函數(shù)f(x)是否存在?若存在,求出f(x)的表達式;若不存在,請說明理由.

解:設(shè)符合條件的f(x)存在,

∵函數(shù)圖象的對稱軸是x=-,

又b0,-0.

①當(dāng)-0,即01時,

函數(shù)x=-有最小值-1,則

或(舍去).

②當(dāng)-1-,即12時,則

(舍去)或(舍去).

③當(dāng)--1,即b2時,函數(shù)在[-1,0]上單調(diào)遞增,則解得

綜上所述,符合條件的函數(shù)有兩個,

f(x)=x2-1或f(x)=x2+2x.

(文)已知二次函數(shù)f(x)=x2+(b+1)x+c(b0,cR).

若f(x)的定義域為[-1,0]時,值域也是[-1,0],符合上述條件的函數(shù)f(x)是否存在?若存在,求出f(x)的表達式;若不存在,請說明理由.

解:∵函數(shù)圖象的對稱軸是

x=-,又b0,--.

設(shè)符合條件的f(x)存在,

①當(dāng)--1時,即b1時,函數(shù)f(x)在[-1,0]上單調(diào)遞增,則

②當(dāng)-1-,即01時,則

(舍去).

綜上所述,符合條件的函數(shù)為f(x)=x2+2x.

7.已知函數(shù)f(x)=x+的定義域為(0,+),且f(2)=2+.設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.

(1)求a的值.

(2)問:PMPN是否為定值?若是,則求出該定值;若不是,請說明理由.

(3)設(shè)O為坐標(biāo)原點,求四邊形OMPN面積的最小值.

解:(1)∵f(2)=2+=2+,a=.

(2)設(shè)點P的坐標(biāo)為(x0,y0),則有y0=x0+,x00,由點到直線的距離公式可知,PM==,PN=x0,有PMPN=1,即PMPN為定值,這個值為1.

(3)由題意可設(shè)M(t,t),可知N(0,y0).

∵PM與直線y=x垂直,kPM1=-1,即=-1.解得t=(x0+y0).

又y0=x0+,t=x0+.

S△OPM=+,S△OPN=x02+.

S四邊形OMPN=S△OPM+S△OPN=(x02+)+1+.

當(dāng)且僅當(dāng)x0=1時,等號成立.

此時四邊形OMPN的面積有最小值1+.

探究創(chuàng)新

8.有一塊邊長為4的正方形鋼板,現(xiàn)對其進行切割、焊接成一個長方體形無蓋容器(切、焊損耗忽略不計).有人應(yīng)用數(shù)學(xué)知識作了如下設(shè)計:如圖(a),在鋼板的四個角處各切去一個小正方形,剩余部分圍成一個長方體,該長方體的高為小正方形邊長,如圖(b).

(1)請你求出這種切割、焊接而成的長方體的最大容積V1;

(2)由于上述設(shè)計存在缺陷(材料有所浪費),請你重新設(shè)計切、焊方法,使材料浪費減少,而且所得長方體容器的容積V2V1.

解:(1)設(shè)切去正方形邊長為x,則焊接成的長方體的底面邊長為4-2x,高為x,

V1=(4-2x)2x=4(x3-4x2+4x)(0

V1=4(3x2-8x+4).

令V1=0,得x1=,x2=2(舍去).

而V1=12(x-)(x-2),

又當(dāng)x時,V10;當(dāng)

當(dāng)x=時,V1取最大值.

(2)重新設(shè)計方案如下:

如圖①,在正方形的兩個角處各切下一個邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;如圖③,將圖②焊成長方體容器.

新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積V2=321=6,顯然V2V1.

故第二種方案符合要求.

●思悟小結(jié)

1.函數(shù)知識可深可淺,復(fù)習(xí)時應(yīng)掌握好分寸,如二次函數(shù)問題應(yīng)高度重視,其他如分類討論、探索性問題屬熱點內(nèi)容,應(yīng)適當(dāng)加強.

2.數(shù)形結(jié)合思想貫穿于函數(shù)研究的各個領(lǐng)域的全部過程中,掌握了這一點,將會體會到函數(shù)問題既千姿百態(tài),又有章可循.

●教師下載中心

教學(xué)點睛

數(shù)形結(jié)合和數(shù)形轉(zhuǎn)化是解決本章問題的重要思想方法,應(yīng)要求學(xué)生熟練掌握用函數(shù)的圖象及方程的曲線去處理函數(shù)、方程、不等式等問題.

拓展題例

【例1】設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且對任意a、b[-1,1],當(dāng)a+b0時,都有0.

(1)若ab,比較f(a)與f(b)的大小;

(2)解不等式f(x-)

(3)記P={xy=f(x-c)},Q={xy=f(x-c2)},且PQ=,求c的取值范圍.

解:設(shè)-1x1

0.

∵x1-x20,f(x1)+f(-x2)0.

f(x1)-f(-x2).

又f(x)是奇函數(shù),f(-x2)=-f(x2).

f(x1)

f(x)是增函數(shù).

(1)∵ab,f(a)f(b).

(2)由f(x-)

-.

不等式的解集為{x-}.

(3)由-11,得-1+c1+c,

P={x-1+c1+c}.

由-11,得-1+c21+c2,

Q={x-1+c21+c2}.

∵PQ=,

1+c-1+c2或-1+c1+c2,

解得c2或c-1.

【例2】已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關(guān)于點A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.

(理)若g(x)=f(x)+,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.

解:(1)設(shè)f(x)圖象上任一點坐標(biāo)為(x,y),點(x,y)關(guān)于點A(0,1)的對稱點(-x,2-y)在h(x)的圖象上.

2-y=-x++2.

y=x+,即f(x)=x+.

(2)(文)g(x)=(x+)x+ax,

即g(x)=x2+ax+1.

g(x)在(0,2]上遞減-2,

a-4.

(理)g(x)=x+.

∵g(x)=1-,g(x)在(0,2]上遞減,

1-0在x(0,2]時恒成立,

即ax2-1在x(0,2]時恒成立.

∵x(0,2]時,(x2-1)max=3,

a3.

【例3】在4月份(共30天),有一新款服裝投放某專賣店銷售,日銷售量(單位:件)f(n)關(guān)于時間n(130,nN__)的函數(shù)關(guān)系如下圖所示,其中函數(shù)f(n)圖象中的點位于斜率為5和-3的兩條直線上,兩直線的交點的橫坐標(biāo)為m,且第m天日銷售量最大.

(1)求f(n)的表達式,及前m天的銷售總數(shù);

(2)按規(guī)律,當(dāng)該專賣店銷售總數(shù)超過400件時,社會上流行該服裝,而日銷售量連續(xù)下降并低于30件時,該服裝的流行會消失.試問該服裝在社會上流行的天數(shù)是否會超過10天?并說明理由.

解:(1)由圖形知,當(dāng)1m且nN__時,f(n)=5n-3.

由f(m)=57,得m=12.

f(n)=

前12天的銷售總量為

5(1+2+3++12)-312=354件.

(2)第13天的銷售量為f(13)=-313+93=54件,而354+54400,

從第14天開始銷售總量超過400件,即開始流行.

設(shè)第n天的日銷售量開始低于30件(1221.

從第22天開始日銷售量低于30件,

即流行時間為14號至21號.

該服裝流行時間不超過10天.

集合高中數(shù)學(xué)教案篇14

一、教學(xué)目標(biāo)

知識與技能:

理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念。

過程與方法:

會建立直角坐標(biāo)系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。

情感態(tài)度與價值觀:

1、提高學(xué)生的推理能力;

2、培養(yǎng)學(xué)生應(yīng)用意識。

二、教學(xué)重點、難點:

教學(xué)重點:

任意角概念的理解;區(qū)間角的集合的書寫。

教學(xué)難點:

終邊相同角的集合的表示;區(qū)間角的集合的書寫。

三、教學(xué)過程

(一)導(dǎo)入新課

1、回顧角的定義

①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角。

②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

(二)教學(xué)新課

1、角的有關(guān)概念:

①角的定義:

角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

②角的名稱:

注意:

⑴在不引起混淆的情況下,“角α”或“∠α”可以簡化成“α”;

⑵零角的終邊與始邊重合,如果α是零角α=0°;

⑶角的概念經(jīng)過推廣后,已包括正角、負角和零角。

⑤練習(xí):請說出角α、β、γ各是多少度?

2、象限角的概念:

①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。

例1、如圖⑴⑵中的角分別屬于第幾象限角?

集合高中數(shù)學(xué)教案篇15

一、教學(xué)設(shè)計

1、教學(xué)背景

在近幾年教學(xué)實踐中我們發(fā)現(xiàn)這樣的怪現(xiàn)象:絕大多數(shù)學(xué)生認為數(shù)學(xué)很重要,但很難;學(xué)得很苦、太抽象、太枯燥,要不是升學(xué),我們才不會去理會,況且將來用數(shù)學(xué)的機會很少;許多學(xué)生完全依賴于教師的講解,不會自學(xué),不敢提問題,也不知如何提問題,這說明了學(xué)生一是不會學(xué)數(shù)學(xué),二是對數(shù)學(xué)有恐懼感,沒有信心,這樣的心態(tài)怎能對數(shù)學(xué)有所創(chuàng)新呢即使有所創(chuàng)新那與學(xué)生們所花代價也不成比例,其間扼殺了他們太多的快樂和個性特長。建構(gòu)主義提倡情境式教學(xué),認為多數(shù)學(xué)習(xí)應(yīng)與具體情境有關(guān),只有在解決與現(xiàn)實世界相關(guān)聯(lián)的問題中,所建構(gòu)的知識才將更豐富、更有效和易于遷移。我們在2009級進行了“創(chuàng)設(shè)數(shù)學(xué)情境與提出數(shù)學(xué)問題”的以學(xué)生為主的“生本課堂”教學(xué)實驗,通過一段時間的教學(xué)實驗,多數(shù)同學(xué)已能適應(yīng)這種學(xué)習(xí)方式,平時能主動思考,敢于提出自己關(guān)心的問題和想法,從過去被動的接受知識逐步過渡到主動探究、索取知識,增強了學(xué)習(xí)數(shù)學(xué)的興趣。

2、教材分析

“余弦定理”是高中數(shù)學(xué)的主要內(nèi)容之一,是解決有關(guān)斜三角形問題的兩個重要定理之一,也是初中“勾股定理”內(nèi)容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉(zhuǎn)化為三角形計算問題的其它數(shù)學(xué)問題及生產(chǎn)、生活實際問題的重要工具,因此具有廣泛的應(yīng)用價值。本節(jié)課是“正弦定理、余弦定理”教學(xué)的第二節(jié)課,其主要任務(wù)是引入并證明余弦定理。布魯納指出,學(xué)生不是被動的、消極的知識的接受者,而是主動的、積極的知識的探究者。教師的作用是創(chuàng)設(shè)學(xué)生能夠獨立探究的情境,引導(dǎo)學(xué)生去思考,參與知識獲得的過程。因此,做好“余弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識,使學(xué)生掌握新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點,而且能培養(yǎng)學(xué)生的應(yīng)用意識和實踐操作能力,以及提出問題、解決問題等研究性學(xué)習(xí)的能力。

3、設(shè)計思路

建構(gòu)主義強調(diào),學(xué)生并不是空著腦袋走進教室的。在日常生活中,在以往的學(xué)習(xí)中,他們已經(jīng)形成了豐富的經(jīng)驗,小到身邊的衣食住行,大到宇宙、星體的運行,從自然現(xiàn)象到社會生活,他們幾乎都有一些自己的看法。而且,有些問題即使他們還沒有接觸過,沒有現(xiàn)成的經(jīng)驗,但當(dāng)問題一旦呈現(xiàn)在面前時,他們往往也可以基于相關(guān)的經(jīng)驗,依靠他們的認知能力,形成對問題的某種解釋。而且,這種解釋并不都是胡亂猜測,而是從他們的經(jīng)驗背景出發(fā)而推出的合乎邏輯的假設(shè)。所以,教學(xué)不能無視學(xué)生的這些經(jīng)驗,另起爐灶,從外部裝進新知識,而是要把學(xué)生現(xiàn)有的知識經(jīng)驗作為新知識的生長點,引導(dǎo)學(xué)生從原有的知識經(jīng)驗中“生長”出新的知識經(jīng)驗。

為此我們根據(jù)“情境—問題”教學(xué)模式,沿著“設(shè)置情境—提出問題—解決問題—反思應(yīng)用”這條主線,把從情境中探索和提出數(shù)學(xué)問題作為教學(xué)的出發(fā)點,以“問題”為紅線組織教學(xué),形成以提出問題與解決問題相互引發(fā)攜手并進的“情境—問題”學(xué)習(xí)鏈,使學(xué)生真正成為提出問題和解決問題的主體,成為知識的“發(fā)現(xiàn)者”和“創(chuàng)造者”,使教學(xué)過程成為學(xué)生主動獲取知識、發(fā)展能力、體驗數(shù)學(xué)的過程。根據(jù)上述精神,做出了如下設(shè)計:

①創(chuàng)設(shè)一個現(xiàn)實問題情境作為提出問題的背景;

②啟發(fā)、引導(dǎo)學(xué)生提出自己關(guān)心的現(xiàn)實問題,逐步將現(xiàn)實問題轉(zhuǎn)化、抽象成過渡性數(shù)學(xué)問題,解決問題時需要使用余弦定理,借此引發(fā)學(xué)生的認知沖突,揭示解斜三角形的必要性,并使學(xué)生產(chǎn)生進一步探索解決問題的動機。然后引導(dǎo)學(xué)生抓住問題的數(shù)學(xué)實質(zhì),引伸成一般的數(shù)學(xué)問題:已知三角形的兩條邊和他們的夾角,求第三邊。

③為了解決提出的問題,引導(dǎo)學(xué)生從原有的知識經(jīng)驗中“生長”出新的知識經(jīng)驗,通過作邊BC的垂線得到兩個直角三角形,然后利用勾股定理和銳角三角函數(shù)得出余弦定理的表達式,進而引導(dǎo)學(xué)生進行嚴(yán)格的邏輯證明。證明時,關(guān)鍵在于啟發(fā)、引導(dǎo)學(xué)生明確以下兩點:一是證明的起點;二是如何將向量關(guān)系轉(zhuǎn)化成數(shù)量關(guān)系。

④由學(xué)生獨立使用已證明的結(jié)論去解決中所提出的問題。

二、教學(xué)反思

本課中,教師立足于所創(chuàng)設(shè)的情境,通過學(xué)生自主探索、合作交流,親身經(jīng)歷了提出問題、解決問題、應(yīng)用反思的過程,學(xué)生成為余弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受了創(chuàng)造的苦和樂,知識目標(biāo)、能力目標(biāo)、情感目標(biāo)均得到了較好的落實,為今后的“定理教學(xué)”提供了一些有用的借鑒。

例如,新課的引入,我引導(dǎo)學(xué)生從向量的模下手思考:

生:利用向量的模并借助向量的數(shù)量積。

教師:正確!由于向量的模長,夾角已知,只需將向量用向量來表示即可。易知,接下來只要把這個向量等式數(shù)量化即可。如何實現(xiàn)呢

學(xué)生8:通過向量數(shù)量積的運算。

通過教師的引導(dǎo),學(xué)生不難發(fā)現(xiàn)還可以寫成,不共線,這是平面向量基本定理的一個運用。因此在一些解三角形問題中,我們還可以利用平面向量基本定理尋找向量等式,再把向量等式化成數(shù)量等式,從而解決問題。

(從學(xué)生的“最近發(fā)展區(qū)”出發(fā),證明方法層層遞進,激發(fā)學(xué)生探求新知的欲望,從而感受成功的喜悅。)

創(chuàng)設(shè)數(shù)學(xué)情境是“情境·問題·反思·應(yīng)用”教學(xué)的基礎(chǔ)環(huán)節(jié),教師必須對學(xué)生的身心特點、知識水平、教學(xué)內(nèi)容、教學(xué)目標(biāo)等因素進行綜合考慮,對可用的情境進行比較,選擇具有較好的教育功能的情境。

從應(yīng)用需要出發(fā),創(chuàng)設(shè)認知沖突型數(shù)學(xué)情境,是創(chuàng)設(shè)情境的常用方法之一?!坝嘞叶ɡ怼本哂袕V泛的應(yīng)用價值,故本課中從應(yīng)用需要出發(fā)創(chuàng)設(shè)了教學(xué)中所使用的數(shù)學(xué)情境。該情境源于教材解三角形應(yīng)用舉例的例1實踐說明,這種將教材中的例題、習(xí)題作為素材改造加工成情境,是創(chuàng)設(shè)情境的一條有效途徑。只要教師能對教材進行深入、細致、全面的研究,便不難發(fā)現(xiàn)教材中有不少可用的素材。

“情境·問題·反思·應(yīng)用”教學(xué)模式主張以問題為“紅線”組織教學(xué)活動,以學(xué)生作為提出問題的主體,如何引導(dǎo)學(xué)生提出問題是教學(xué)成敗的關(guān)鍵,教學(xué)實驗表明,學(xué)生能否提出數(shù)學(xué)問題,不僅受其數(shù)學(xué)基礎(chǔ)、生活經(jīng)歷、學(xué)習(xí)方式等自身因素的影響,還受其所處的環(huán)境、教師對提問的態(tài)度等外在因素的制約。因此,教師不僅要注重創(chuàng)設(shè)適宜的數(shù)學(xué)情境(不僅具有豐富的內(nèi)涵,而且還具有“問題”的誘導(dǎo)性、啟發(fā)性和探索性),而且要真正轉(zhuǎn)變對學(xué)生提問的態(tài)度,提高引導(dǎo)水平,一方面要鼓勵學(xué)生大膽地提出問題,另一方面要妥善處理學(xué)生提出的問題。關(guān)注學(xué)生學(xué)習(xí)的結(jié)果,更關(guān)注學(xué)生學(xué)習(xí)的過程;關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,更關(guān)注學(xué)生在數(shù)學(xué)活動中所表現(xiàn)出來的情感與態(tài)度;關(guān)注是否給學(xué)生創(chuàng)設(shè)了一種情境,使學(xué)生親身經(jīng)歷了數(shù)學(xué)活動過程。把“質(zhì)疑提問”,培養(yǎng)學(xué)生的數(shù)學(xué)問題意識,提高學(xué)生提出數(shù)學(xué)問題的能力作為教與學(xué)活動的起點與歸宿。

517106